SMU-Net: Saliency-Guided Morphology-Aware U-Net for Breast Lesion Segmentation in Ultrasound Image

计算机科学 人工智能 分割 突出 稳健性(进化) 图像分割 模式识别(心理学) 计算机视觉 深度学习 卷积神经网络 生物化学 基因 化学
作者
Zhenyuan Ning,Shengzhou Zhong,Qianjin Feng,Wufan Chen,Yu Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (2): 476-490 被引量:98
标识
DOI:10.1109/tmi.2021.3116087
摘要

Deep learning methods, especially convolutional neural networks, have been successfully applied to lesion segmentation in breast ultrasound (BUS) images. However, pattern complexity and intensity similarity between the surrounding tissues (i.e., background) and lesion regions (i.e., foreground) bring challenges for lesion segmentation. Considering that such rich texture information is contained in background, very few methods have tried to explore and exploit background-salient representations for assisting foreground segmentation. Additionally, other characteristics of BUS images, i.e., 1) low-contrast appearance and blurry boundary, and 2) significant shape and position variation of lesions, also increase the difficulty in accurate lesion segmentation. In this paper, we present a saliency-guided morphology-aware U-Net (SMU-Net) for lesion segmentation in BUS images. The SMU-Net is composed of a main network with an additional middle stream and an auxiliary network. Specifically, we first propose generation of saliency maps which incorporate both low-level and high-level image structures, for foreground and background. These saliency maps are then employed to guide the main network and auxiliary network for respectively learning foreground-salient and background-salient representations. Furthermore, we devise an additional middle stream which basically consists of background-assisted fusion, shape-aware, edge-aware and position-aware units. This stream receives the coarse-to-fine representations from the main network and auxiliary network for efficiently fusing the foreground-salient and background-salient features and enhancing the ability of learning morphological information for network. Extensive experiments on five datasets demonstrate higher performance and superior robustness to the scale of dataset than several state-of-the-art deep learning approaches in breast lesion segmentation in ultrasound image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
2秒前
於香之发布了新的文献求助10
3秒前
科研通AI5应助Alex采纳,获得10
6秒前
6秒前
宋祥廷完成签到,获得积分10
7秒前
Liqy发布了新的文献求助10
7秒前
7秒前
idannn发布了新的文献求助10
7秒前
雏菊发布了新的文献求助10
7秒前
9秒前
柳叶坚刀完成签到,获得积分10
9秒前
科研通AI2S应助活力以冬采纳,获得10
10秒前
应万言完成签到,获得积分0
11秒前
伊绵好完成签到,获得积分10
11秒前
CipherSage应助静影沉璧采纳,获得10
11秒前
12秒前
九鹤发布了新的文献求助10
13秒前
科研通AI5应助lvsehx采纳,获得10
13秒前
13秒前
一颗菠菜完成签到 ,获得积分10
14秒前
bkagyin应助勤恳的夏之采纳,获得10
14秒前
15秒前
16秒前
16秒前
研友_VZG7GZ应助Zander采纳,获得10
17秒前
19秒前
围城发布了新的文献求助20
20秒前
福star高照完成签到,获得积分10
21秒前
21秒前
21秒前
perseverance发布了新的文献求助10
22秒前
雏菊完成签到,获得积分10
23秒前
Alex发布了新的文献求助10
23秒前
24秒前
xiaopeng发布了新的文献求助10
26秒前
如意小丸子完成签到,获得积分10
27秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
求polyinfo中的所有数据,主要要共聚物的,有偿。 1500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
the living world 11th edition 800
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水产动物免疫学 500
鱼类基因组学及基因组物种技术 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4176660
求助须知:如何正确求助?哪些是违规求助? 3712063
关于积分的说明 11705936
捐赠科研通 3394807
什么是DOI,文献DOI怎么找? 1862451
邀请新用户注册赠送积分活动 921213
科研通“疑难数据库(出版商)”最低求助积分说明 833056