Machine Learning for Accurate Intraoperative Pediatric Middle Ear Effusion Diagnosis

医学 鼓膜切开术 渗出 鼓室造瘘管 接收机工作特性 中耳炎 置信区间 外科 听力学 内科学
作者
Matthew G. Crowson,Christopher J. Hartnick,Gillian R. Diercks,Thomas Q. Gallagher,M. Shannon Fracchia,Jennifer Setlur,Michael S. Cohen
出处
期刊:Pediatrics [American Academy of Pediatrics]
卷期号:147 (4) 被引量:44
标识
DOI:10.1542/peds.2020-034546
摘要

OBJECTIVES: Misdiagnosis of acute and chronic otitis media in children can result in significant consequences from either undertreatment or overtreatment. Our objective was to develop and train an artificial intelligence algorithm to accurately predict the presence of middle ear effusion in pediatric patients presenting to the operating room for myringotomy and tube placement. METHODS: We trained a neural network to classify images as “ normal” (no effusion) or “abnormal” (effusion present) using tympanic membrane images from children taken to the operating room with the intent of performing myringotomy and possible tube placement for recurrent acute otitis media or otitis media with effusion. Model performance was tested on held-out cases and fivefold cross-validation. RESULTS: The mean training time for the neural network model was 76.0 (SD ± 0.01) seconds. Our model approach achieved a mean image classification accuracy of 83.8% (95% confidence interval [CI]: 82.7–84.8). In support of this classification accuracy, the model produced an area under the receiver operating characteristic curve performance of 0.93 (95% CI: 0.91–0.94) and F1-score of 0.80 (95% CI: 0.77–0.82). CONCLUSIONS: Artificial intelligence–assisted diagnosis of acute or chronic otitis media in children may generate value for patients, families, and the health care system by improving point-of-care diagnostic accuracy. With a small training data set composed of intraoperative images obtained at time of tympanostomy tube insertion, our neural network was accurate in predicting the presence of a middle ear effusion in pediatric ear cases. This diagnostic accuracy performance is considerably higher than human-expert otoscopy-based diagnostic performance reported in previous studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dididodo完成签到,获得积分10
1秒前
NexusExplorer应助张章采纳,获得10
2秒前
爆米花应助doocan采纳,获得10
2秒前
Self发布了新的文献求助10
3秒前
罗中翠发布了新的文献求助10
3秒前
鼻揩了转去应助汪鱼岩采纳,获得10
4秒前
Ava应助尛瞐慶成采纳,获得10
4秒前
层层泡芙完成签到,获得积分10
5秒前
科研通AI5应助zhanyuji采纳,获得10
5秒前
5秒前
6秒前
sunhuaqiang发布了新的文献求助10
6秒前
bkagyin应助LXZ采纳,获得10
6秒前
ttgx完成签到,获得积分10
8秒前
cdercder应助sadf采纳,获得10
8秒前
Orange应助Snieno采纳,获得10
8秒前
薛厌发布了新的文献求助10
9秒前
xdwyd给xdwyd的求助进行了留言
10秒前
10秒前
lzj发布了新的文献求助10
10秒前
维多利亚少年完成签到,获得积分10
11秒前
754完成签到,获得积分10
11秒前
11秒前
lxiaok发布了新的文献求助10
12秒前
12秒前
田様应助碑海北采纳,获得10
13秒前
13秒前
科研通AI5应助风中的安珊采纳,获得10
14秒前
美满悲完成签到,获得积分10
15秒前
15秒前
Wzebrafish发布了新的文献求助10
16秒前
善学以致用应助ZhouLu采纳,获得10
16秒前
tw1999完成签到,获得积分20
16秒前
轻青发布了新的文献求助10
17秒前
冷静的莞完成签到 ,获得积分0
17秒前
欧阳蛋蛋鸡完成签到 ,获得积分10
18秒前
852应助李广辉采纳,获得10
18秒前
ding应助czj采纳,获得10
18秒前
hahahah发布了新的文献求助10
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795186
求助须知:如何正确求助?哪些是违规求助? 3340148
关于积分的说明 10298847
捐赠科研通 3056613
什么是DOI,文献DOI怎么找? 1677114
邀请新用户注册赠送积分活动 805194
科研通“疑难数据库(出版商)”最低求助积分说明 762391