Predictive modeling of Persian walnut (Juglans regia L.) in vitro proliferation media using machine learning approaches: a comparative study of ANN, KNN and GEP models

胡桃 均方误差 粒子群优化 感知器 基因表达程序设计 多层感知器 机器学习 人工智能 人工神经网络 数学 决定系数 预测建模 线性回归 算法 计算机科学 植物 统计 生物
作者
Mohammad Sadat‐Hosseini,Mohammad Mehdi Arab,Mohammad Soltani,Maliheh Eftekhari,Amanollah Soleimani,Kourosh Vahdati
出处
期刊:Plant Methods [BioMed Central]
卷期号:18 (1) 被引量:31
标识
DOI:10.1186/s13007-022-00871-5
摘要

Optimizing plant tissue culture media is a complicated process, which is easily influenced by genotype, mineral nutrients, plant growth regulators (PGRs), vitamins and other factors, leading to undesirable and inefficient medium composition. Facing incidence of different physiological disorders such as callusing, shoot tip necrosis (STN) and vitrification (Vit) in walnut proliferation, it is necessary to develop prediction models for identifying the impact of different factors involving in this process. In the present study, three machine learning (ML) approaches including multi-layer perceptron neural network (MLPNN), k-nearest neighbors (KNN) and gene expression programming (GEP) were implemented and compared to multiple linear regression (MLR) to develop models for prediction of in vitro proliferation of Persian walnut (Juglans regia L.). The accuracy of developed models was evaluated using coefficient of determination (R2), root mean square error (RMSE) and mean absolute error (MAE). With the aim of optimizing the selected prediction models, multi-objective evolutionary optimization algorithm using particle swarm optimization (PSO) technique was applied.Our results indicated that all three ML techniques had higher accuracy of prediction than MLR, for example, calculated R2 of MLPNN, KNN and GEP vs. MLR was 0.695, 0.672 and 0.802 vs. 0.412 in Chandler and 0.358, 0.377 and 0.428 vs. 0.178 in Rayen, respectively. The GEP models were further selected to be optimized using PSO. The comparison of modeling procedures provides a new insight into in vitro culture medium composition prediction models. Based on the results, hybrid GEP-PSO technique displays good performance for modeling walnut tissue culture media, while MLPNN and KNN have also shown strong estimation capability.Here, besides MLPNN and GEP, KNN also is introduced, for the first time, as a simple technique with high accuracy to be used for developing prediction models in optimizing plant tissue culture media composition studies. Therefore, selection of the modeling technique to study depends on the researcher's desire regarding the simplicity of the procedure, obtaining clear results as entire formula and/or less time to analyze.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理雪晴发布了新的文献求助10
刚刚
Lucas应助杨志坚采纳,获得10
刚刚
Mr发布了新的文献求助10
刚刚
1秒前
英俊的铭应助跳跃的翼采纳,获得10
1秒前
2秒前
脑洞疼应助JG采纳,获得10
2秒前
jiajiajia完成签到,获得积分10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
周本正发布了新的文献求助10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
ED应助科研通管家采纳,获得10
2秒前
核桃应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
孙燕应助科研通管家采纳,获得30
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
核桃应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得30
3秒前
3秒前
哈鲁发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
汉堡包应助科研通管家采纳,获得40
4秒前
Xenia完成签到,获得积分10
4秒前
CHENDQ完成签到,获得积分10
4秒前
dhppp完成签到,获得积分20
4秒前
5秒前
feifei9606应助huahua采纳,获得40
5秒前
5秒前
莹莹完成签到 ,获得积分10
7秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
メバロノラクトンの量産技術と皮膚老化防止効果 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3939159
求助须知:如何正确求助?哪些是违规求助? 3485217
关于积分的说明 11031660
捐赠科研通 3214994
什么是DOI,文献DOI怎么找? 1776990
邀请新用户注册赠送积分活动 863257
科研通“疑难数据库(出版商)”最低求助积分说明 798787