Predictive modeling of Persian walnut (Juglans regia L.) in vitro proliferation media using machine learning approaches: a comparative study of ANN, KNN and GEP models

胡桃 均方误差 粒子群优化 感知器 基因表达程序设计 多层感知器 机器学习 人工智能 人工神经网络 数学 决定系数 预测建模 线性回归 算法 计算机科学 植物 统计 生物
作者
Mohammad Sadat‐Hosseini,Mohammad Mehdi Arab,Mohammad Soltani,Maliheh Eftekhari,Amanollah Soleimani,Kourosh Vahdati
出处
期刊:Plant Methods [BioMed Central]
卷期号:18 (1) 被引量:31
标识
DOI:10.1186/s13007-022-00871-5
摘要

Optimizing plant tissue culture media is a complicated process, which is easily influenced by genotype, mineral nutrients, plant growth regulators (PGRs), vitamins and other factors, leading to undesirable and inefficient medium composition. Facing incidence of different physiological disorders such as callusing, shoot tip necrosis (STN) and vitrification (Vit) in walnut proliferation, it is necessary to develop prediction models for identifying the impact of different factors involving in this process. In the present study, three machine learning (ML) approaches including multi-layer perceptron neural network (MLPNN), k-nearest neighbors (KNN) and gene expression programming (GEP) were implemented and compared to multiple linear regression (MLR) to develop models for prediction of in vitro proliferation of Persian walnut (Juglans regia L.). The accuracy of developed models was evaluated using coefficient of determination (R2), root mean square error (RMSE) and mean absolute error (MAE). With the aim of optimizing the selected prediction models, multi-objective evolutionary optimization algorithm using particle swarm optimization (PSO) technique was applied.Our results indicated that all three ML techniques had higher accuracy of prediction than MLR, for example, calculated R2 of MLPNN, KNN and GEP vs. MLR was 0.695, 0.672 and 0.802 vs. 0.412 in Chandler and 0.358, 0.377 and 0.428 vs. 0.178 in Rayen, respectively. The GEP models were further selected to be optimized using PSO. The comparison of modeling procedures provides a new insight into in vitro culture medium composition prediction models. Based on the results, hybrid GEP-PSO technique displays good performance for modeling walnut tissue culture media, while MLPNN and KNN have also shown strong estimation capability.Here, besides MLPNN and GEP, KNN also is introduced, for the first time, as a simple technique with high accuracy to be used for developing prediction models in optimizing plant tissue culture media composition studies. Therefore, selection of the modeling technique to study depends on the researcher's desire regarding the simplicity of the procedure, obtaining clear results as entire formula and/or less time to analyze.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
义气如萱发布了新的文献求助10
3秒前
4秒前
longh驳回了乐乐应助
5秒前
123完成签到,获得积分10
5秒前
科研通AI5应助dmeng采纳,获得10
6秒前
w934420513发布了新的文献求助10
6秒前
丘比特应助知足的憨人*-*采纳,获得10
6秒前
7秒前
111发布了新的文献求助10
7秒前
nana完成签到,获得积分10
7秒前
8秒前
Ssmall发布了新的文献求助10
10秒前
tgoutgou发布了新的文献求助20
11秒前
小周发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
剑来发布了新的文献求助10
17秒前
JamesPei应助废物自救采纳,获得10
18秒前
辛勤又蓝发布了新的文献求助10
18秒前
苹果问晴发布了新的文献求助10
19秒前
852应助Ssmall采纳,获得10
20秒前
20秒前
23秒前
菜头完成签到,获得积分10
23秒前
24秒前
潇湘夜雨发布了新的文献求助30
28秒前
今后应助科研通管家采纳,获得10
28秒前
慕青应助科研通管家采纳,获得50
28秒前
打打应助科研通管家采纳,获得10
28秒前
传奇3应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
Juvenilesy应助科研通管家采纳,获得10
28秒前
昏睡的蟠桃应助科研通管家采纳,获得150
29秒前
小二郎应助科研通管家采纳,获得10
29秒前
Pothos应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
李爱国应助科研通管家采纳,获得10
29秒前
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778177
求助须知:如何正确求助?哪些是违规求助? 3323851
关于积分的说明 10216096
捐赠科研通 3039069
什么是DOI,文献DOI怎么找? 1667747
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758358