催化作用
硫黄
化学
吸附
氧化物
纳米
纳米颗粒
金属
硫酸盐
纳米技术
红外光谱学
化学工程
无机化学
材料科学
有机化学
工程类
作者
Zafer Say,Melike Kaya,Çağıl Kaderoğlu,Yusuf Koçak,Kerem Emre Ercan,Abel Tetteh Sika-Nartey,Ahsan Jalal,Ahmet Arda Turk,Christoph Langhammer,Mirali Jahangirzadeh Varjovi,Engin Durgun,Emrah Özensoy
摘要
Fundamental understanding of catalytic deactivation phenomena such as sulfur poisoning occurring on metal/metal-oxide interfaces is essential for the development of high-performance heterogeneous catalysts with extended lifetimes. Unambiguous identification of catalytic poisoning species requires experimental methods simultaneously delivering accurate information regarding adsorption sites and adsorption geometries of adsorbates with nanometer-scale spatial resolution, as well as their detailed chemical structure and surface functional groups. However, to date, it has not been possible to study catalytic sulfur poisoning of metal/metal-oxide interfaces at the nanometer scale without sacrificing chemical definition. Here, we demonstrate that near-field nano-infrared spectroscopy can effectively identify the chemical nature, adsorption sites, and adsorption geometries of sulfur-based catalytic poisons on a Pd(nanodisk)/Al2O3 (thin-film) planar model catalyst surface at the nanometer scale. The current results reveal striking variations in the nature of sulfate species from one nanoparticle to another, vast alterations of sulfur poisoning on a single Pd nanoparticle as well as at the assortment of sulfate species at the active metal-metal-oxide support interfacial sites. These findings provide critical molecular-level insights crucial for the development of long-lifetime precious metal catalysts resistant toward deactivation by sulfur.
科研通智能强力驱动
Strongly Powered by AbleSci AI