已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

In situ mesoscale soil moisture content monitoring based on global navigation satellite system interferometric reflectometry and ensemble modeling

粒子群优化 遥感 均方误差 反射计 计算机科学 数据集 含水量 环境科学 算法 数学 人工智能 统计 地质学 计算机视觉 时域 岩土工程
作者
Qianyang Wang,Yuexin Zheng,Shugao Xu,Guihuan Zhou,Jingshan Yu
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:16 (02)
标识
DOI:10.1117/1.jrs.16.024505
摘要

The existing point-scale or large-scale soil moisture content (SMC) monitoring techniques cannot entirely satisfy the requirements of in situ SMC monitoring for agricultural purposes. We proposed a framework for in situ mesoscale SMC monitoring based on global navigation satellite system interferometric reflectometry (GNSS-IR) and ensemble modeling technique. The framework consists of a data collecting and preparing system and an SMC retrieval system. The amplitude, phase, and detection depth, which are the GNSS-IR signal-to-noise ratio parameters, were positively and negatively correlated with the volumetric SMC data, respectively. In the SMC retrieval stage, five kinds of models including linear regression, multilinear regression, k-neighbor regressor, support vector regressor, and random forest (RF) was tested as the first-order model. Two kinds of swarm optimization algorithms including sparrow search algorithm (SSA) and particle swarm optimization (PSO) were examined for models’ hyper-parameter optimization. The results show that the RF performed best and had a coefficient of determination (R2) of 0.798, a root mean square error (RMSE) of 0.043 cm3 / cm3, and a mean absolute error (MAE) of 0.034 cm3 / cm3 for the validation set. Both the SSA and PSO are effective for models’ optimization. After input variable selection, the second-order ensemble RF model outperformed the first-order RF model and had an R2 of 0.819, an RMSE of 0.040 cm3 / cm3, and an MAE of 0.031 cm3 / cm3 for the validation set. The proposed framework is potentially valuable for popularization because of its cost-effectiveness and high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柒咩咩发布了新的文献求助10
刚刚
小马甲应助悦耳芹菜采纳,获得10
1秒前
1秒前
1秒前
Jasper应助邢文瑞采纳,获得10
2秒前
谨慎初兰发布了新的文献求助10
2秒前
大个应助lyy66964193采纳,获得10
4秒前
故意的松思应助简单问儿采纳,获得20
5秒前
七慕凉应助小鱼采纳,获得20
5秒前
刘zy发布了新的文献求助10
6秒前
英姑应助小黑子fanfan采纳,获得10
6秒前
7秒前
8秒前
luminous发布了新的文献求助10
8秒前
8秒前
9秒前
11秒前
Wendyli完成签到,获得积分10
12秒前
juan123_wu发布了新的文献求助10
13秒前
邢文瑞发布了新的文献求助10
13秒前
Lee发布了新的文献求助10
14秒前
一只AI艾完成签到,获得积分10
17秒前
17秒前
kunkun发布了新的文献求助10
19秒前
深情安青应助hu采纳,获得10
19秒前
科研通AI5应助谭凯文采纳,获得10
20秒前
20秒前
科研通AI5应助YYY采纳,获得10
21秒前
邢文瑞完成签到,获得积分20
21秒前
21秒前
21秒前
zhx完成签到,获得积分10
22秒前
Lucas应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
华仔应助科研通管家采纳,获得10
23秒前
23秒前
25秒前
26秒前
LYT发布了新的文献求助30
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792253
求助须知:如何正确求助?哪些是违规求助? 3336501
关于积分的说明 10281144
捐赠科研通 3053220
什么是DOI,文献DOI怎么找? 1675522
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761436