Inorganometallic Photocatalyst for CO2 Reduction

光催化 电子转移 同种类的 降级(电信) 材料科学 半导体 光敏剂 催化作用 多相催化 反应中间体 光化学 纳米技术 化学 组合化学 化学物理 有机化学 光电子学 物理 热力学 电信 计算机科学
作者
Ho‐Jin Son,Chyongjin Pac,Sang Ook Kang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (24): 4530-4544 被引量:59
标识
DOI:10.1021/acs.accounts.1c00579
摘要

ConspectusDuring the last few decades, the design of catalytic systems for CO2 reduction has been extensively researched and generally involves (1) traditional approaches using molecular organic/organometallic materials and heterogeneous inorganic semiconductors and (2) combinatory approaches wherein these materials are combined as needed. Recently, we have devised a number of new TiO2-mediated multicomponent hybrid systems that synergistically integrate the intrinsic merits of various materials, namely, molecular photosensitizers/catalysts and n-type TiO2 semiconductors, and lower the energetic and kinetic barriers between components. We have termed such multicomponent hybrid systems assembled from the hybridization of various organic/inorganic/organometallic units in a single platform inorganometallic photocatalysts. The multicomponent inorganometallic (MIOM) hybrid system onto which the photosensitizer and catalyst are coadsorbed efficiently eliminates the need for bulk-phase diffusion of the components and avoids the accumulation of radical intermediates that invokes a degradation pathway, in contrast to the homogeneous system, in which the free reactive species are concentrated in a confined reaction space. In particular, in energetic terms, we discovered that in nonaqueous media, the conduction band (CB) levels of reduced TiO2 (TiO2(e-)) are positioned at a higher level (in the range -1.5 to -1.9 V vs SCE). This energetic benefit of reduced TiO2 allows smooth electron transfer (ET) from injected electrons (TiO2(e-)) to the coadsorbed CO2 reduction catalyst, which requires relatively high reducing power (at least more than -1.1 V vs SCE). On the other hand, the existence of various shallow surface trapping sites and surface bands, which are 0.3-1.0 eV below the CB of TiO2, efficiently facilitates electron injection from any photosensitizer (including dyes having low excited energy levels) to TiO2 without energetic limitation. This is contrasted with most photocatalytic systems, wherein successive absorption of single high-energy photons is required to produce excited states with enough energy to fulfill photocatalytic reaction, which may allow unwanted side reactions during photocatalysis. In this Account, we present our recent research efforts toward advancing these MIOM hybrid systems for photochemical CO2 reduction and discuss their working mechanisms in detail. Basic ET processes within the MIOM system, including intervalence ET in organic/organometallic redox systems, metal-to-ligand charge transfer of organometallic complexes, and interfacial/outer-sphere charge transfer between components, were investigated by conducting serial photophysical and electrochemical analyses. Because such ET events occur primarily at the interface between the components, the efficiency of interfacial ET between the molecular components (organic/organometallic photosensitizers and molecular reduction catalysts) and the bulk inorganic solid (mainly n-type TiO2 semiconductors) has a significant influence on the overall photochemical reaction kinetics and mechanism. In some TiO2-mediated MIOM hybrids, the chemical attachment of organic or organometallic photosensitizing units onto TiO2 semiconductors efficiently eliminates the step of diffusion/collision-controlled ET between components and prevents the accumulation of reactive species (oxidatively quenched cations or reductively quenched anions) in the reaction solution, ensuring steady photosensitization over an extended reaction period. The site isolation of a single-site organometallic catalyst employing TiO2 immobilization promotes the monomeric catalytic pathway during the CO2 reduction process, resulting in enhanced product selectivity and catalytic performance, including lifetime extension. In addition, as an alternative inorganic solid scaffold, the introduction of a host porphyrin matrix (interlinked in a metal-organic framework (MOF) material) led to efficient and durable photocatalytic CO2 conversion by the new MOF-Re(I) hybrid as a result of efficient light harvesting/exciton migration in the porphyrinic MOF and rapid quenching of the photogenerated electrons by the doped Re(I) catalytic sites. Overall, the case studies presented herein provide valuable insights for the rational design of advanced multicomponent hybrid systems for artificial photosynthesis involving CO2 reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助哈哈哈哈哈哈采纳,获得10
2秒前
2秒前
Kim完成签到,获得积分10
6秒前
srilankalt发布了新的文献求助10
8秒前
辣辣完成签到,获得积分10
10秒前
年轻冥茗完成签到,获得积分10
12秒前
kcc完成签到,获得积分10
12秒前
cccui完成签到,获得积分10
13秒前
天天快乐应助年轻冥茗采纳,获得10
15秒前
田様应助memem1采纳,获得10
17秒前
华仔应助zxj采纳,获得10
19秒前
SOLOMON应助TAO采纳,获得10
20秒前
YHQ完成签到,获得积分20
21秒前
pyc076完成签到,获得积分10
21秒前
852应助srilankalt采纳,获得10
21秒前
鹿鸣完成签到,获得积分10
22秒前
longyuyan应助优质羊肉泡馍采纳,获得10
22秒前
ll完成签到,获得积分10
23秒前
赘婿应助嗯qq采纳,获得10
25秒前
Hygge完成签到,获得积分10
26秒前
自信依瑶完成签到,获得积分10
26秒前
29秒前
29秒前
yxy999完成签到,获得积分10
29秒前
30秒前
情怀应助旺仔不甜采纳,获得10
30秒前
自信依瑶发布了新的文献求助10
30秒前
31秒前
SteveRogers完成签到,获得积分10
31秒前
32秒前
33秒前
yhw123123完成签到,获得积分20
33秒前
珂珂发布了新的文献求助10
34秒前
SteveRogers发布了新的文献求助150
35秒前
37秒前
喜悦彤发布了新的文献求助30
38秒前
鲁路修完成签到,获得积分10
38秒前
39秒前
40秒前
42秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
Pressing the Fight: Print, Propaganda, and the Cold War 500
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
The Three Stars Each: The Astrolabes and Related Texts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2470891
求助须知:如何正确求助?哪些是违规求助? 2137639
关于积分的说明 5446802
捐赠科研通 1861606
什么是DOI,文献DOI怎么找? 925834
版权声明 562721
科研通“疑难数据库(出版商)”最低求助积分说明 495246