Inorganometallic Photocatalyst for CO2 Reduction

光催化 电子转移 同种类的 降级(电信) 材料科学 半导体 光敏剂 催化作用 多相催化 光化学 纳米技术 化学 组合化学 有机化学 光电子学 物理 热力学 电信 计算机科学
作者
Ho‐Jin Son,Chyongjin Pac,Sang Ook Kang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (24): 4530-4544 被引量:90
标识
DOI:10.1021/acs.accounts.1c00579
摘要

ConspectusDuring the last few decades, the design of catalytic systems for CO2 reduction has been extensively researched and generally involves (1) traditional approaches using molecular organic/organometallic materials and heterogeneous inorganic semiconductors and (2) combinatory approaches wherein these materials are combined as needed. Recently, we have devised a number of new TiO2-mediated multicomponent hybrid systems that synergistically integrate the intrinsic merits of various materials, namely, molecular photosensitizers/catalysts and n-type TiO2 semiconductors, and lower the energetic and kinetic barriers between components. We have termed such multicomponent hybrid systems assembled from the hybridization of various organic/inorganic/organometallic units in a single platform inorganometallic photocatalysts. The multicomponent inorganometallic (MIOM) hybrid system onto which the photosensitizer and catalyst are coadsorbed efficiently eliminates the need for bulk-phase diffusion of the components and avoids the accumulation of radical intermediates that invokes a degradation pathway, in contrast to the homogeneous system, in which the free reactive species are concentrated in a confined reaction space. In particular, in energetic terms, we discovered that in nonaqueous media, the conduction band (CB) levels of reduced TiO2 (TiO2(e-)) are positioned at a higher level (in the range -1.5 to -1.9 V vs SCE). This energetic benefit of reduced TiO2 allows smooth electron transfer (ET) from injected electrons (TiO2(e-)) to the coadsorbed CO2 reduction catalyst, which requires relatively high reducing power (at least more than -1.1 V vs SCE). On the other hand, the existence of various shallow surface trapping sites and surface bands, which are 0.3-1.0 eV below the CB of TiO2, efficiently facilitates electron injection from any photosensitizer (including dyes having low excited energy levels) to TiO2 without energetic limitation. This is contrasted with most photocatalytic systems, wherein successive absorption of single high-energy photons is required to produce excited states with enough energy to fulfill photocatalytic reaction, which may allow unwanted side reactions during photocatalysis. In this Account, we present our recent research efforts toward advancing these MIOM hybrid systems for photochemical CO2 reduction and discuss their working mechanisms in detail. Basic ET processes within the MIOM system, including intervalence ET in organic/organometallic redox systems, metal-to-ligand charge transfer of organometallic complexes, and interfacial/outer-sphere charge transfer between components, were investigated by conducting serial photophysical and electrochemical analyses. Because such ET events occur primarily at the interface between the components, the efficiency of interfacial ET between the molecular components (organic/organometallic photosensitizers and molecular reduction catalysts) and the bulk inorganic solid (mainly n-type TiO2 semiconductors) has a significant influence on the overall photochemical reaction kinetics and mechanism. In some TiO2-mediated MIOM hybrids, the chemical attachment of organic or organometallic photosensitizing units onto TiO2 semiconductors efficiently eliminates the step of diffusion/collision-controlled ET between components and prevents the accumulation of reactive species (oxidatively quenched cations or reductively quenched anions) in the reaction solution, ensuring steady photosensitization over an extended reaction period. The site isolation of a single-site organometallic catalyst employing TiO2 immobilization promotes the monomeric catalytic pathway during the CO2 reduction process, resulting in enhanced product selectivity and catalytic performance, including lifetime extension. In addition, as an alternative inorganic solid scaffold, the introduction of a host porphyrin matrix (interlinked in a metal-organic framework (MOF) material) led to efficient and durable photocatalytic CO2 conversion by the new MOF-Re(I) hybrid as a result of efficient light harvesting/exciton migration in the porphyrinic MOF and rapid quenching of the photogenerated electrons by the doped Re(I) catalytic sites. Overall, the case studies presented herein provide valuable insights for the rational design of advanced multicomponent hybrid systems for artificial photosynthesis involving CO2 reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
祥子完成签到,获得积分10
4秒前
心心完成签到,获得积分10
4秒前
YAMO一发布了新的文献求助10
5秒前
7秒前
一王打尽完成签到,获得积分10
8秒前
Rebekah发布了新的文献求助10
9秒前
小米粥完成签到,获得积分10
9秒前
ao完成签到,获得积分10
11秒前
12秒前
hxj发布了新的文献求助10
12秒前
13秒前
樛木木关注了科研通微信公众号
13秒前
文献抓手完成签到,获得积分10
14秒前
15秒前
17秒前
dddd完成签到,获得积分10
17秒前
gyf完成签到,获得积分10
17秒前
chens627发布了新的文献求助10
17秒前
18秒前
blake完成签到,获得积分10
19秒前
神勇千万完成签到,获得积分10
19秒前
慕青应助大力猫崽采纳,获得10
20秒前
20秒前
爱吃饼干的土拨鼠完成签到,获得积分10
20秒前
朴素羊完成签到,获得积分10
20秒前
热情大树发布了新的文献求助10
21秒前
包容的剑完成签到 ,获得积分10
21秒前
21秒前
22秒前
大马猴发布了新的文献求助10
22秒前
QZZZ完成签到,获得积分10
22秒前
金桔儿发布了新的文献求助10
23秒前
ww发布了新的文献求助10
24秒前
chens627完成签到,获得积分10
24秒前
QZZZ发布了新的文献求助10
27秒前
27秒前
jiaye发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Commercial production of mevalonolactone by fermentation and the application to skin cosmetics with anti-aging effect 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3930283
求助须知:如何正确求助?哪些是违规求助? 3475252
关于积分的说明 10985960
捐赠科研通 3205313
什么是DOI,文献DOI怎么找? 1771428
邀请新用户注册赠送积分活动 858916
科研通“疑难数据库(出版商)”最低求助积分说明 796873