Inorganometallic Photocatalyst for CO2 Reduction

光催化 电子转移 同种类的 降级(电信) 材料科学 半导体 光敏剂 催化作用 多相催化 光化学 纳米技术 化学 组合化学 有机化学 光电子学 物理 热力学 电信 计算机科学
作者
Ho‐Jin Son,Chyongjin Pac,Sang Ook Kang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (24): 4530-4544 被引量:86
标识
DOI:10.1021/acs.accounts.1c00579
摘要

ConspectusDuring the last few decades, the design of catalytic systems for CO2 reduction has been extensively researched and generally involves (1) traditional approaches using molecular organic/organometallic materials and heterogeneous inorganic semiconductors and (2) combinatory approaches wherein these materials are combined as needed. Recently, we have devised a number of new TiO2-mediated multicomponent hybrid systems that synergistically integrate the intrinsic merits of various materials, namely, molecular photosensitizers/catalysts and n-type TiO2 semiconductors, and lower the energetic and kinetic barriers between components. We have termed such multicomponent hybrid systems assembled from the hybridization of various organic/inorganic/organometallic units in a single platform inorganometallic photocatalysts. The multicomponent inorganometallic (MIOM) hybrid system onto which the photosensitizer and catalyst are coadsorbed efficiently eliminates the need for bulk-phase diffusion of the components and avoids the accumulation of radical intermediates that invokes a degradation pathway, in contrast to the homogeneous system, in which the free reactive species are concentrated in a confined reaction space. In particular, in energetic terms, we discovered that in nonaqueous media, the conduction band (CB) levels of reduced TiO2 (TiO2(e-)) are positioned at a higher level (in the range -1.5 to -1.9 V vs SCE). This energetic benefit of reduced TiO2 allows smooth electron transfer (ET) from injected electrons (TiO2(e-)) to the coadsorbed CO2 reduction catalyst, which requires relatively high reducing power (at least more than -1.1 V vs SCE). On the other hand, the existence of various shallow surface trapping sites and surface bands, which are 0.3-1.0 eV below the CB of TiO2, efficiently facilitates electron injection from any photosensitizer (including dyes having low excited energy levels) to TiO2 without energetic limitation. This is contrasted with most photocatalytic systems, wherein successive absorption of single high-energy photons is required to produce excited states with enough energy to fulfill photocatalytic reaction, which may allow unwanted side reactions during photocatalysis. In this Account, we present our recent research efforts toward advancing these MIOM hybrid systems for photochemical CO2 reduction and discuss their working mechanisms in detail. Basic ET processes within the MIOM system, including intervalence ET in organic/organometallic redox systems, metal-to-ligand charge transfer of organometallic complexes, and interfacial/outer-sphere charge transfer between components, were investigated by conducting serial photophysical and electrochemical analyses. Because such ET events occur primarily at the interface between the components, the efficiency of interfacial ET between the molecular components (organic/organometallic photosensitizers and molecular reduction catalysts) and the bulk inorganic solid (mainly n-type TiO2 semiconductors) has a significant influence on the overall photochemical reaction kinetics and mechanism. In some TiO2-mediated MIOM hybrids, the chemical attachment of organic or organometallic photosensitizing units onto TiO2 semiconductors efficiently eliminates the step of diffusion/collision-controlled ET between components and prevents the accumulation of reactive species (oxidatively quenched cations or reductively quenched anions) in the reaction solution, ensuring steady photosensitization over an extended reaction period. The site isolation of a single-site organometallic catalyst employing TiO2 immobilization promotes the monomeric catalytic pathway during the CO2 reduction process, resulting in enhanced product selectivity and catalytic performance, including lifetime extension. In addition, as an alternative inorganic solid scaffold, the introduction of a host porphyrin matrix (interlinked in a metal-organic framework (MOF) material) led to efficient and durable photocatalytic CO2 conversion by the new MOF-Re(I) hybrid as a result of efficient light harvesting/exciton migration in the porphyrinic MOF and rapid quenching of the photogenerated electrons by the doped Re(I) catalytic sites. Overall, the case studies presented herein provide valuable insights for the rational design of advanced multicomponent hybrid systems for artificial photosynthesis involving CO2 reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spy完成签到 ,获得积分10
1秒前
strama完成签到,获得积分10
1秒前
17秒前
Aaernan完成签到 ,获得积分10
21秒前
SDNUDRUG发布了新的文献求助10
23秒前
沐雨篱边完成签到 ,获得积分10
27秒前
科研通AI5应助山山而川采纳,获得10
29秒前
keyana25完成签到,获得积分10
41秒前
1523完成签到 ,获得积分10
42秒前
42秒前
山山而川发布了新的文献求助10
48秒前
beplayer1完成签到,获得积分10
49秒前
所所应助SDNUDRUG采纳,获得10
50秒前
Sun1c7完成签到,获得积分10
53秒前
cdercder应助科研通管家采纳,获得10
54秒前
阿托品完成签到 ,获得积分10
54秒前
山山而川完成签到,获得积分10
56秒前
祥子完成签到,获得积分10
1分钟前
1分钟前
SDNUDRUG发布了新的文献求助10
1分钟前
冷酷的闹闹完成签到 ,获得积分10
1分钟前
周冯雪完成签到 ,获得积分10
1分钟前
fang完成签到,获得积分10
1分钟前
wenhuanwenxian完成签到 ,获得积分10
1分钟前
1分钟前
糖宝完成签到 ,获得积分10
1分钟前
minuxSCI完成签到,获得积分10
1分钟前
winew完成签到 ,获得积分10
1分钟前
1分钟前
妮妮发布了新的文献求助10
1分钟前
ybwei2008_163发布了新的文献求助10
1分钟前
狼来了aas完成签到,获得积分10
1分钟前
hanhan完成签到 ,获得积分10
2分钟前
HHHWJ完成签到 ,获得积分10
2分钟前
科研通AI5应助wwqing0704采纳,获得10
2分钟前
2分钟前
kenchilie完成签到 ,获得积分10
2分钟前
wwqing0704发布了新的文献求助10
2分钟前
妇产科医生完成签到 ,获得积分10
2分钟前
ybwei2008_163发布了新的文献求助10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780865
求助须知:如何正确求助?哪些是违规求助? 3326359
关于积分的说明 10226680
捐赠科研通 3041524
什么是DOI,文献DOI怎么找? 1669502
邀请新用户注册赠送积分活动 799075
科研通“疑难数据库(出版商)”最低求助积分说明 758732