渗透(战争)
活性成分
渗透
化学
亲脂性
角质层
透皮
色谱法
膜
生物利用度
生物物理学
材料科学
有机化学
生物化学
药理学
医学
病理
运筹学
工程类
生物
作者
Markus Lubda,Maximilian Zander,Andrew Salazar,Harald Kolmar,Jörg von Hagen
摘要
With its large surface area skin facilitates a topical administration of active ingredients, and thus percutaneous delivery to a specific target site. Due to its high barrier function and different diffusion characteristics skin governs the efficacy of these active ingredients and a bioavailability in the epidermal and dermal tissue.In order to characterize the vertical and lateral movement of molecules into and inside the skin the diffusivity of active ingredients with different physico-chemical properties and their penetration ability in different dermal skin layers was investigated.A novel lateral dermal microdialysis (MD) penetration setup was used to compare the diffusion characteristics of active ingredients into superficial and deep implanted MD membranes in porcine skin. The corresponding membrane depth was determined via ultrasound and the active ingredients concentration via high-pressure liquid chromatography (HPLC) measurement.The depth depended penetration of superficial and deep implanted MD membranes and the quantitative diffusivity of two active ingredients was compared. An experimental lateral MD setup was used to determine the influence of percutaneous skin penetration characteristics of an active ingredient with different lipophilic and hydrophilic characteristics. Therefore, hydrophilic caffeine and lipophilic LIP1, which have an identical molecular weight, but different lipophilic characteristics were tested for their penetration ability inside a propylene glycol (PG) and oleic acid (OA) formulation.The vertical and lateral penetration movement of caffeine was found to exceed that of LIP1 through the hydrophilic dermal environment. The findings of this study show that the lipophilicity of active ingredients influence the penetration movement and that skin enables a conical increasing lateral diffusivity and transdermal delivery.
科研通智能强力驱动
Strongly Powered by AbleSci AI