已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CSKG4APT: A Cybersecurity Knowledge Graph for Advanced Persistent Threat Organization Attribution

计算机科学 计算机安全 归属 网络攻击 本体论 心理学 社会心理学 认识论 哲学
作者
Yitong Ren,Yanjun Xiao,Yinghai Zhou,Zhiyong Zhang,Zhihong Tian
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-15 被引量:103
标识
DOI:10.1109/tkde.2022.3175719
摘要

Open-source cyber threat intelligence (OSCTI) is becoming more influential in obtaining current network security information. Most studies on cyber threat intelligence (CTI) focus on automating the extraction of threat entities from public sources that describe attack events. The cybersecurity knowledge graph aims to change the expression of threat knowledge so that security researchers can accurately and efficiently obtain various types of threat information for preliminary intelligent decisions. The attribution technology can not only assist security analysts in detecting advanced persistent threats, but can also identify the same threat from different attack events. Therefore, it is important to trace the attack threat actor. In this study, we used the knowledge graph technology, considered the latest research on cyber threat attack attribution, and thoroughly examined key related technologies and theories in the process of constructing and applying the advanced persistent threat (APT) knowledge graph from OSCTI. We designed a cybersecurity platform named CSKG4APT based on a knowledge graph. Inspired by the theory of ontology, we constructed CSKG4APT as an APT knowledge graph model based on real APT attack scenarios. We then designed an APT threat knowledge extraction algorithm for completing and updating the knowledge graph using deep learning and expert knowledge. Finally, we proposed a practical APT attack attribution method with attribution and countermeasures. CSKG4APT is not a passive defense method in traditional network confrontation but one that integrates a large amount of fragmented intelligence and can actively adjust its defense strategy. It lays the foundation for further dominance in network attack and defense.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文明8完成签到 ,获得积分10
刚刚
刚刚
冷月发布了新的文献求助10
4秒前
chenlc971125完成签到 ,获得积分10
6秒前
黄垚发布了新的文献求助10
7秒前
10秒前
祁问儿完成签到 ,获得积分10
10秒前
11秒前
共享精神应助sy采纳,获得10
12秒前
dahe发布了新的文献求助10
15秒前
结实初翠发布了新的文献求助10
16秒前
洁净的诗珊完成签到 ,获得积分10
20秒前
酷波er应助Leo采纳,获得10
21秒前
852应助北冥鱼采纳,获得10
22秒前
好好完成签到,获得积分10
24秒前
牟翎完成签到,获得积分10
24秒前
allover完成签到,获得积分10
25秒前
黑巧的融化完成签到 ,获得积分10
27秒前
27秒前
JW2071367完成签到,获得积分10
27秒前
28秒前
30秒前
31秒前
Apple发布了新的文献求助10
32秒前
爆米花应助shirley采纳,获得10
32秒前
sy发布了新的文献求助10
34秒前
北冥鱼发布了新的文献求助10
35秒前
Leo发布了新的文献求助10
37秒前
123456完成签到,获得积分10
37秒前
39秒前
刘小能完成签到 ,获得积分10
41秒前
翟翟完成签到 ,获得积分10
41秒前
42秒前
sy完成签到,获得积分10
43秒前
修骨匠人完成签到,获得积分20
43秒前
shirley发布了新的文献求助10
44秒前
量子星尘发布了新的文献求助10
46秒前
anthea完成签到 ,获得积分10
53秒前
一个正经人完成签到,获得积分10
53秒前
鲁路修完成签到,获得积分10
53秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
塔里木盆地肖尔布拉克组微生物岩沉积层序与储层成因 500
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4269299
求助须知:如何正确求助?哪些是违规求助? 3800084
关于积分的说明 11910372
捐赠科研通 3447169
什么是DOI,文献DOI怎么找? 1890842
邀请新用户注册赠送积分活动 941636
科研通“疑难数据库(出版商)”最低求助积分说明 845757