Prognostic implication of an energy metabolism‐related 11‐gene signature in lung cancer

单变量 基因签名 比例危险模型 肿瘤科 内科学 基因 肺癌 腺癌 Lasso(编程语言) 基因表达 多元统计 医学 生物信息学 生物 计算生物学 癌症 计算机科学 遗传学 机器学习 万维网
作者
Yang Zhou,Yuanhe Wang
出处
期刊:Journal of Biochemical and Molecular Toxicology [Wiley]
卷期号:36 (10) 被引量:2
标识
DOI:10.1002/jbt.23171
摘要

Energy metabolism therapy has gradually shown its potential in the treatment of tumor patients, but it has significant selectivity, thus distinguishing energy subtypes of lung adenocarcinoma (LUAD) is necessary to identify patients who may benefit from energy metabolism interference therapy. Gene expression data downloaded from The Cancer Genome Atlas and Gene Expression Omnibus, molecular subtypes were selected using NMF algorithm, prognostic differentially expressed genes (DEGs) were identified with DESeq. 2 and survival package, Lasso and cox regression analysis were used to Construct of Risk Signature. The relationship between molecular subtypes and prognosis as well as clinical characteristics were evaluated. Univariate and multivariate COX regression were used to analyze the correlation between the signature and patient prognosis. Based on 592 energy metabolism-related genes, 430 LUAD samples were divided into three subtypes, of which C2 has the worst prognosis, and 942 prognostic DEGs were identified. 11-gene prognostic risk signature was constructed. Compared with the traditional clinical features of T, N, and age, this 11-gene signature performs better in predicting the risk of LUAD prognosis. At the same time, it is an independent risk factor for patient prognosis. The signature showed strong robustness in different cohorts. Compared with other published signatures, 11-gene signatures have strong clinical applicability and accuracy. The predictive signature will enable patients with LUAD to be more accurately managed in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangxinyi完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
科研通AI5应助小海绵采纳,获得10
3秒前
4秒前
活泼的问夏完成签到,获得积分10
4秒前
8秒前
姜君发布了新的文献求助10
8秒前
qiyan发布了新的文献求助10
9秒前
665发布了新的文献求助10
9秒前
轻舟发布了新的文献求助10
9秒前
10秒前
却却发布了新的文献求助10
12秒前
都是发布了新的文献求助10
12秒前
AmbitionY完成签到,获得积分10
14秒前
科研小当家完成签到,获得积分10
14秒前
JuJu完成签到,获得积分10
15秒前
Rita应助苹果安露采纳,获得10
17秒前
Cradoc完成签到,获得积分10
17秒前
星辰大海应助yaoshun40采纳,获得10
17秒前
轻舟完成签到,获得积分20
17秒前
19秒前
姜君完成签到,获得积分10
20秒前
21秒前
Cradoc发布了新的文献求助10
25秒前
GGBoy发布了新的文献求助30
25秒前
25秒前
募股小完成签到,获得积分10
27秒前
李健应助科研通管家采纳,获得10
27秒前
27秒前
丘比特应助科研通管家采纳,获得10
28秒前
Akim应助科研通管家采纳,获得10
28秒前
28秒前
FashionBoy应助科研通管家采纳,获得10
28秒前
29秒前
研友_VZG7GZ应助Jj采纳,获得10
31秒前
li发布了新的文献求助10
31秒前
汉堡包应助Umusakun采纳,获得10
33秒前
学术小白发布了新的文献求助10
34秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
半导体金属氧化物纳米材料:合成、气敏特性及气体传感应用 200
Pleistocene Mammals of North America 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832857
求助须知:如何正确求助?哪些是违规求助? 3375285
关于积分的说明 10488387
捐赠科研通 3094867
什么是DOI,文献DOI怎么找? 1704083
邀请新用户注册赠送积分活动 819760
科研通“疑难数据库(出版商)”最低求助积分说明 771623