A Vulnerability Detection Algorithm Based on Transformer Model

计算机科学 固件 代码重用 依赖关系图 软件 软件开发 软件开发过程 抽象语法树 调试 源代码 程序设计语言 软件工程 理论计算机科学 人工智能 操作系统 语法
作者
Fujin Hou,Kun Zhou,Longbin Li,Yuan Tian,Jie Li,Jian Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 43-55 被引量:4
标识
DOI:10.1007/978-3-031-06791-4_4
摘要

In today’s Internet background and the rapid development of computer science and technology, new software is born every day, whether it is on the computer or mobile phone and on the hardware. In order to meet people’s various daily needs, developers need to continuously develop new software and firmware. The software development process requires the reuse of shared codes and the realization of the middle-station module codes. These reusable codes can save developers’ development time and improve efficiency. The code of the middle-station model is highly complex, and the vulnerabilities hidden in it are not easy to be discovered. A large number of vulnerabilities are inevitably introduced, which leads to immeasurable losses in downstream task modules. In order to enable these middle-station codes to better serve downstream tasks and discover the vulnerabilities hidden in them in time, it is first necessary to extract the defined software method body from the source code. We build an abstract syntax tree for the method to form a statement set; then, the variable names, function names, and strings in the method are replaced. Each statement in the code is given a number to construct a node set. The dependency between functions and variables includes data dependency and control dependency extraction and the node set itself as the input feature of the model. This paper uses Transformer model to model the sequence information. Transformer model can make the information of each node in the sequence fully interact. Based on the Transformer model, this paper further attempts to add the attention structure to improve the probability of detecting vulnerabilities. In the final experimental results, the model can detect vulnerabilities in the code with an accuracy of 95.04% and a recall rate of 88.89%, which also proves that transformer can accurately detect vulnerabilities in the sequence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dongjy应助lxlcx采纳,获得50
刚刚
1秒前
燕一刀发布了新的文献求助10
2秒前
陈文文发布了新的文献求助10
2秒前
xn201120发布了新的文献求助10
3秒前
111完成签到,获得积分10
3秒前
陈曦完成签到,获得积分20
3秒前
4秒前
倪倪发布了新的文献求助10
5秒前
5秒前
天天快乐应助面包人采纳,获得10
6秒前
裴胜轩DAD发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
wanci应助喻踏歌采纳,获得10
10秒前
11秒前
南风完成签到,获得积分10
12秒前
Micheallee发布了新的文献求助10
12秒前
12秒前
TWO宝发布了新的文献求助10
13秒前
13秒前
yiren发布了新的文献求助10
13秒前
zzp发布了新的文献求助10
14秒前
15秒前
深情安青应助可靠的采萱采纳,获得10
16秒前
xn201120发布了新的文献求助10
18秒前
19秒前
浮生发布了新的文献求助10
19秒前
大模型应助寒冰寒冰采纳,获得10
20秒前
张小盒发布了新的文献求助10
21秒前
大个应助wise111采纳,获得10
22秒前
24秒前
bkagyin应助裴胜轩DAD采纳,获得10
24秒前
sk夏冰完成签到 ,获得积分10
24秒前
超级柜子完成签到,获得积分10
25秒前
随遇而安完成签到,获得积分10
25秒前
25秒前
充电宝应助Mobitz采纳,获得10
27秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916154
求助须知:如何正确求助?哪些是违规求助? 3461715
关于积分的说明 10918533
捐赠科研通 3188554
什么是DOI,文献DOI怎么找? 1762704
邀请新用户注册赠送积分活动 853070
科研通“疑难数据库(出版商)”最低求助积分说明 793649