亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ChromosomeNet: A massive dataset enabling benchmarking and building basedlines of clinical chromosome classification

染色体 标杆管理 计算机科学 核型 人工智能 细胞遗传学 染色体分析 数据挖掘 生物 遗传学 基因 营销 业务
作者
Chengchuang Lin,Hanbiao Chen,Jie‐Sheng Huang,Jing Peng,Li Guo,Zhirong Yang,Jiahua Du,Shuangyin Li,Aihua Yin,Gansen Zhao
出处
期刊:Computational Biology and Chemistry [Elsevier]
卷期号:100: 107731-107731 被引量:12
标识
DOI:10.1016/j.compbiolchem.2022.107731
摘要

Chromosome karyotyping analysis is a vital cytogenetics technique for diagnosing genetic and congenital malformations, analyzing gestational and implantation failures, etc. Since the chromosome classification as an essential stage in chromosome karyotype analysis is a highly time-consuming, tedious, and error-prone task, which requires a large amount of manual work of experienced cytogenetics experts. Many deep learning-based methods have been proposed to address the chromosome classification issues. However, two challenges still remain in current chromosome classification methods. First, most existing methods were developed by different private datasets, making these methods difficult to compare with each other on the same base. Second, due to the absence of reproducing details of most existing methods, these methods are difficult to be applied in clinical chromosome classification applications widely. To address the above challenges in the chromosome classification issue, this work builds and publishes a massive clinical dataset. This dataset enables the benchmarking and building chromosome classification baselines suitable for different scenarios. The massive clinical dataset consists of 126,453 privacy preserving G-band chromosome instances from 2763 karyotypes of 408 individuals. To our best knowledge, it is the first work to collect, annotate, and release a publicly available clinical chromosome classification dataset whose data size scale is also over 120,000. Meanwhile, the experimental results show that the proposed dataset can boost performance of existing chromosome classification models at a varied range of degrees, with the highest accuracy improvement by 5.39 % points. Moreover, the best baseline with 99.33 % accuracy reports state-of-the-art classification performance. The clinical dataset and state-of-the-art baselines can be found at https://github.com/CloudDataLab/BenchmarkForChromosomeClassification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
21秒前
东溟渔夫发布了新的文献求助10
26秒前
36秒前
39秒前
49秒前
等待安莲发布了新的文献求助10
54秒前
笨笨的怜雪完成签到 ,获得积分10
1分钟前
科目三应助李佳怡采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
wodetaiyangLLL完成签到 ,获得积分10
2分钟前
2分钟前
MchemG应助TXZ06采纳,获得30
2分钟前
2分钟前
2分钟前
2分钟前
MchemG应助TXZ06采纳,获得30
2分钟前
2分钟前
2分钟前
简宁完成签到,获得积分10
2分钟前
TXZ06完成签到,获得积分10
2分钟前
李佳怡发布了新的文献求助10
2分钟前
2分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
Amoro发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
李佳怡完成签到,获得积分10
3分钟前
3分钟前
Amoro完成签到,获得积分10
3分钟前
东溟渔夫发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
香蕉觅云应助xzy998采纳,获得50
4分钟前
4分钟前
4分钟前
清风明月完成签到 ,获得积分10
4分钟前
haprier完成签到 ,获得积分10
4分钟前
Akim应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664480
求助须知:如何正确求助?哪些是违规求助? 4862708
关于积分的说明 15107835
捐赠科研通 4823085
什么是DOI,文献DOI怎么找? 2581925
邀请新用户注册赠送积分活动 1536045
关于科研通互助平台的介绍 1494449