Applying Classical, Ab Initio, and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries

电解质 离子液体 电池(电) 化学 分子动力学 离子电导率 从头算 纳米技术 电导率 化学物理 电极 热力学 计算化学 材料科学 物理化学 有机化学 物理 功率(物理) 催化作用
作者
Nan Yao,Xiang Chen,Zhongheng Fu,Qiang Zhang
出处
期刊:Chemical Reviews [American Chemical Society]
卷期号:122 (12): 10970-11021 被引量:369
标识
DOI:10.1021/acs.chemrev.1c00904
摘要

Rechargeable batteries have become indispensable implements in our daily life and are considered a promising technology to construct sustainable energy systems in the future. The liquid electrolyte is one of the most important parts of a battery and is extremely critical in stabilizing the electrode–electrolyte interfaces and constructing safe and long-life-span batteries. Tremendous efforts have been devoted to developing new electrolyte solvents, salts, additives, and recipes, where molecular dynamics (MD) simulations play an increasingly important role in exploring electrolyte structures, physicochemical properties such as ionic conductivity, and interfacial reaction mechanisms. This review affords an overview of applying MD simulations in the study of liquid electrolytes for rechargeable batteries. First, the fundamentals and recent theoretical progress in three-class MD simulations are summarized, including classical, ab initio, and machine-learning MD simulations (section 2). Next, the application of MD simulations to the exploration of liquid electrolytes, including probing bulk and interfacial structures (section 3), deriving macroscopic properties such as ionic conductivity and dielectric constant of electrolytes (section 4), and revealing the electrode–electrolyte interfacial reaction mechanisms (section 5), are sequentially presented. Finally, a general conclusion and an insightful perspective on current challenges and future directions in applying MD simulations to liquid electrolytes are provided. Machine-learning technologies are highlighted to figure out these challenging issues facing MD simulations and electrolyte research and promote the rational design of advanced electrolytes for next-generation rechargeable batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔幻小白菜完成签到,获得积分10
刚刚
刚刚
英姑应助阿歪歪采纳,获得10
1秒前
4秒前
hfhfj完成签到,获得积分10
4秒前
7秒前
7秒前
7秒前
7秒前
lanmin发布了新的文献求助10
8秒前
8秒前
9秒前
Hedy发布了新的文献求助20
10秒前
卷卷完成签到 ,获得积分10
11秒前
12秒前
12秒前
皮皮发布了新的文献求助10
12秒前
YDM发布了新的文献求助10
13秒前
桥桥发布了新的文献求助10
13秒前
研友_VZG7GZ应助山君采纳,获得10
14秒前
Pablo发布了新的文献求助10
14秒前
科研通AI6应助Snowy周采纳,获得10
15秒前
15秒前
郝富完成签到,获得积分10
16秒前
16秒前
负蕲发布了新的文献求助30
18秒前
668866发布了新的文献求助30
19秒前
19秒前
晅007完成签到,获得积分10
19秒前
19秒前
阿邱发布了新的文献求助10
21秒前
kuan完成签到,获得积分10
21秒前
22秒前
天天好心覃完成签到 ,获得积分10
22秒前
甜甜耶耶完成签到,获得积分20
23秒前
25秒前
26秒前
十二发布了新的文献求助10
26秒前
lyx完成签到,获得积分10
26秒前
李博发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073632
求助须知:如何正确求助?哪些是违规求助? 4293744
关于积分的说明 13379375
捐赠科研通 4115142
什么是DOI,文献DOI怎么找? 2253454
邀请新用户注册赠送积分活动 1258217
关于科研通互助平台的介绍 1191108