Applying Classical, Ab Initio, and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries

电解质 离子液体 电池(电) 化学 分子动力学 离子电导率 从头算 纳米技术 电导率 化学物理 电极 热力学 计算化学 材料科学 物理化学 有机化学 物理 功率(物理) 催化作用
作者
Nan Yao,Xiang Chen,Zhongheng Fu,Qiang Zhang
出处
期刊:Chemical Reviews [American Chemical Society]
卷期号:122 (12): 10970-11021 被引量:339
标识
DOI:10.1021/acs.chemrev.1c00904
摘要

Rechargeable batteries have become indispensable implements in our daily life and are considered a promising technology to construct sustainable energy systems in the future. The liquid electrolyte is one of the most important parts of a battery and is extremely critical in stabilizing the electrode–electrolyte interfaces and constructing safe and long-life-span batteries. Tremendous efforts have been devoted to developing new electrolyte solvents, salts, additives, and recipes, where molecular dynamics (MD) simulations play an increasingly important role in exploring electrolyte structures, physicochemical properties such as ionic conductivity, and interfacial reaction mechanisms. This review affords an overview of applying MD simulations in the study of liquid electrolytes for rechargeable batteries. First, the fundamentals and recent theoretical progress in three-class MD simulations are summarized, including classical, ab initio, and machine-learning MD simulations (section 2). Next, the application of MD simulations to the exploration of liquid electrolytes, including probing bulk and interfacial structures (section 3), deriving macroscopic properties such as ionic conductivity and dielectric constant of electrolytes (section 4), and revealing the electrode–electrolyte interfacial reaction mechanisms (section 5), are sequentially presented. Finally, a general conclusion and an insightful perspective on current challenges and future directions in applying MD simulations to liquid electrolytes are provided. Machine-learning technologies are highlighted to figure out these challenging issues facing MD simulations and electrolyte research and promote the rational design of advanced electrolytes for next-generation rechargeable batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cake完成签到 ,获得积分10
刚刚
周周完成签到,获得积分20
1秒前
2秒前
GISRSKING发布了新的文献求助10
3秒前
科研通AI5应助juckblack采纳,获得30
3秒前
3秒前
cake关注了科研通微信公众号
3秒前
mof发布了新的文献求助10
3秒前
研友_VZG7GZ应助li2123采纳,获得10
3秒前
LSY发布了新的文献求助10
4秒前
JamesPei应助小秦秦采纳,获得10
5秒前
幽幽发布了新的文献求助30
5秒前
不要加糖发布了新的文献求助10
5秒前
乐乐应助小巧的凝荷采纳,获得10
6秒前
小巧秋柔发布了新的文献求助10
6秒前
fffff发布了新的文献求助10
7秒前
7秒前
7秒前
阿斯顿发布了新的文献求助10
7秒前
8秒前
9秒前
BIGDUCK发布了新的文献求助10
10秒前
perry4rosa发布了新的文献求助10
11秒前
11秒前
隐形曼青应助如初采纳,获得10
11秒前
12秒前
科研通AI6应助mof采纳,获得10
12秒前
郭郭郭发布了新的文献求助10
12秒前
科研通AI5应助fffff采纳,获得10
12秒前
12秒前
13秒前
13秒前
清秀豪英发布了新的文献求助10
14秒前
锦诗完成签到,获得积分10
14秒前
谭志迅发布了新的文献求助20
14秒前
nana完成签到,获得积分10
15秒前
16秒前
16秒前
刘思琪发布了新的文献求助10
16秒前
高兴孤云发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4564080
求助须知:如何正确求助?哪些是违规求助? 3988332
关于积分的说明 12349825
捐赠科研通 3659447
什么是DOI,文献DOI怎么找? 2016625
邀请新用户注册赠送积分活动 1051033
科研通“疑难数据库(出版商)”最低求助积分说明 938872