Applying Classical, Ab Initio, and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries

电解质 离子液体 电池(电) 化学 分子动力学 离子电导率 从头算 纳米技术 电导率 化学物理 电极 热力学 计算化学 材料科学 物理化学 有机化学 物理 功率(物理) 催化作用
作者
Nan Yao,Xiang Chen,Zhongheng Fu,Qiang Zhang
出处
期刊:Chemical Reviews [American Chemical Society]
卷期号:122 (12): 10970-11021 被引量:279
标识
DOI:10.1021/acs.chemrev.1c00904
摘要

Rechargeable batteries have become indispensable implements in our daily life and are considered a promising technology to construct sustainable energy systems in the future. The liquid electrolyte is one of the most important parts of a battery and is extremely critical in stabilizing the electrode–electrolyte interfaces and constructing safe and long-life-span batteries. Tremendous efforts have been devoted to developing new electrolyte solvents, salts, additives, and recipes, where molecular dynamics (MD) simulations play an increasingly important role in exploring electrolyte structures, physicochemical properties such as ionic conductivity, and interfacial reaction mechanisms. This review affords an overview of applying MD simulations in the study of liquid electrolytes for rechargeable batteries. First, the fundamentals and recent theoretical progress in three-class MD simulations are summarized, including classical, ab initio, and machine-learning MD simulations (section 2). Next, the application of MD simulations to the exploration of liquid electrolytes, including probing bulk and interfacial structures (section 3), deriving macroscopic properties such as ionic conductivity and dielectric constant of electrolytes (section 4), and revealing the electrode–electrolyte interfacial reaction mechanisms (section 5), are sequentially presented. Finally, a general conclusion and an insightful perspective on current challenges and future directions in applying MD simulations to liquid electrolytes are provided. Machine-learning technologies are highlighted to figure out these challenging issues facing MD simulations and electrolyte research and promote the rational design of advanced electrolytes for next-generation rechargeable batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
6秒前
cfjbxf完成签到,获得积分10
6秒前
abcdefg发布了新的文献求助10
9秒前
LVMIN发布了新的文献求助10
11秒前
Galaxee发布了新的文献求助10
11秒前
善学以致用应助羽翊采纳,获得10
14秒前
科研通AI5应助爽爽采纳,获得10
19秒前
20秒前
冰魂应助abcdefg采纳,获得10
23秒前
26秒前
沉静书本发布了新的文献求助10
26秒前
30秒前
www发布了新的文献求助10
32秒前
今后应助611采纳,获得10
33秒前
羽翊发布了新的文献求助10
34秒前
高高保温杯完成签到,获得积分20
37秒前
陌上桑完成签到,获得积分10
39秒前
eth完成签到 ,获得积分10
40秒前
不倦应助聪明梦之采纳,获得30
40秒前
51秒前
研友_nPPzon完成签到,获得积分10
52秒前
西西发布了新的文献求助10
55秒前
57秒前
樂酉发布了新的文献求助10
58秒前
59秒前
科目三应助Galaxee采纳,获得10
1分钟前
筷子吃不了面完成签到,获得积分10
1分钟前
611发布了新的文献求助10
1分钟前
爆米花应助樂酉采纳,获得10
1分钟前
1分钟前
小白完成签到 ,获得积分10
1分钟前
1分钟前
Galaxee发布了新的文献求助10
1分钟前
chengmin发布了新的文献求助10
1分钟前
所所应助www采纳,获得10
1分钟前
123456完成签到,获得积分10
1分钟前
rare完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777073
求助须知:如何正确求助?哪些是违规求助? 3322455
关于积分的说明 10210340
捐赠科研通 3037802
什么是DOI,文献DOI怎么找? 1666872
邀请新用户注册赠送积分活动 797829
科研通“疑难数据库(出版商)”最低求助积分说明 758044