Multi-agent deep reinforcement learning for adaptive coordinated metro service operations with flexible train composition

强化学习 人工神经网络 计算机科学 马尔可夫决策过程 理论(学习稳定性) 功能(生物学) 分布式计算 服务(商务) 过程(计算) 控制(管理) 人工智能 运筹学 马尔可夫过程 工程类 机器学习 操作系统 经济 经济 统计 生物 进化生物学 数学
作者
Cheng-shuo Ying,Andy H.F. Chow,Hoa T.M. Nguyen,Kwai‐Sang Chin
出处
期刊:Transportation Research Part B-methodological [Elsevier BV]
卷期号:161: 36-59 被引量:40
标识
DOI:10.1016/j.trb.2022.05.001
摘要

This paper presents an adaptive control system for coordinated metro operations with flexible train composition by using a multi-agent deep reinforcement learning (MADRL) approach. The control problem is formulated as a Markov decision process (MDP) with multiple agents regulating different service lines in a metro network with passenger transfer. To ensure the overall computational effectiveness and stability of the control system, we adopt an actor–critic reinforcement learning framework in which each control agent is associated with a critic function for estimating future system states and an actor function deriving local operational decisions. The critics and actors in the MADRL are represented by multi-layer artificial neural networks (ANNs). A multi-agent deep deterministic policy gradient (MADDPG) algorithm is developed for training the actor and critic ANNs through successive simulated transitions over the entire metro network. The developed framework is tested with a real-world scenario in Bakerloo and Victoria Lines of London Underground, UK. Experiment results demonstrate that the proposed method can outperform previous centralized optimization and distributed control approaches in terms of solution quality and performance achieved. Further analysis shows the merits of MADRL for coordinated service regulation with flexible train composition. This study contributes to real-time coordinated metro network services with flexible train composition and advanced optimization techniques. • An adaptive rail transit control system with passengers’ transfers and flexible train composition. • A novel modeling and optimization framework based on multi-agent deep reinforcement learning. • A computational framework with ‘decentralized execution and centralized training’ for effectiveness and stability. • Case study demonstrating the system efficiency and computational effectiveness of proposed algorithm over previous methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泡芙1207完成签到 ,获得积分10
3秒前
卷卷豆完成签到 ,获得积分10
3秒前
sougardenist完成签到 ,获得积分10
6秒前
直率的笑翠完成签到 ,获得积分10
11秒前
小静完成签到 ,获得积分10
20秒前
巫马白亦完成签到,获得积分10
22秒前
花开无声完成签到,获得积分10
23秒前
开霁完成签到 ,获得积分10
24秒前
渺渺完成签到 ,获得积分10
29秒前
枫叶完成签到 ,获得积分10
39秒前
loren313完成签到,获得积分0
41秒前
49秒前
moonlight发布了新的文献求助10
53秒前
科研小虫完成签到,获得积分10
54秒前
大轩完成签到 ,获得积分10
57秒前
北国雪未消完成签到 ,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
风信子deon01完成签到,获得积分10
1分钟前
1分钟前
巫郁发布了新的文献求助10
1分钟前
培培完成签到 ,获得积分10
1分钟前
ARIA完成签到 ,获得积分10
1分钟前
又又完成签到,获得积分10
1分钟前
巫郁完成签到,获得积分10
1分钟前
稚祎完成签到 ,获得积分10
1分钟前
孝顺的觅风完成签到 ,获得积分10
1分钟前
科研小白完成签到,获得积分10
1分钟前
涛1完成签到 ,获得积分10
1分钟前
三伏天完成签到,获得积分10
1分钟前
研友_Z7XY28完成签到 ,获得积分10
1分钟前
嘻嘻哈哈啊完成签到 ,获得积分10
1分钟前
北宫完成签到 ,获得积分10
2分钟前
泡芙1207发布了新的文献求助10
2分钟前
2分钟前
wangqinlei发布了新的文献求助10
2分钟前
hanliulaixi完成签到 ,获得积分10
2分钟前
诸葛御风应助Alan采纳,获得30
2分钟前
钟声完成签到,获得积分0
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340681
关于积分的说明 10300957
捐赠科研通 3057185
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626