An Online Entropy-Based DDoS Flooding Attack Detection System With Dynamic Threshold

计算机科学 服务拒绝攻击 应用层DDoS攻击 熵(时间箭头) 网络数据包 计算机安全 计算机网络 服务器 入侵检测系统 洪水(心理学) 互联网 实时计算 心理学 量子力学 物理 万维网 心理治疗师
作者
Loïc D. Tsobdjou,Samuel Pierre,Alejandro Quintero
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:19 (2): 1679-1689 被引量:31
标识
DOI:10.1109/tnsm.2022.3142254
摘要

Distributed denial of service attacks are cyber-attacks that target the availability of servers. As a result, legitimate users no longer have access to the service. This can have a negative impact on an organization, such as lack of reputation and economic losses. Therefore, it is important to design defense mechanisms against these attacks. There are systems for detecting distributed denial of service attacks in the literature, which still have various shortcomings. Some of these systems detect the presence of attack traffic without identifying the attack packets or flows. Others use static thresholds and therefore cannot adapt to changes in legitimate traffic. In this paper, we propose an online system that aims to detect flooding attacks in a short timeframe and a client–server environment. The proposed detection system consists of five modules, namely features extraction and connections construction, suspicious activity detection, attack connections detection, alert generation and threshold update. The suspicious activity detection module calculates the normalized Shannon entropy by considering the source Internet Protocol address as a random variable. Suspicious activity is detected when the computed entropy is below a threshold. The threshold calculation is based on Chebyshev's theorem. We propose a dynamic threshold algorithm to track changes in legitimate traffic. We evaluate the proposed system through simulations and using a publicly available dataset. Compared to other similar works, the proposed detection system has a better performance in terms of detection rate, false positive rate, precision and overall accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢又蓝完成签到,获得积分10
4秒前
4秒前
斯文败类应助乖7采纳,获得10
7秒前
kiwi完成签到,获得积分10
7秒前
8秒前
xiaohe完成签到,获得积分10
8秒前
8秒前
www完成签到,获得积分10
9秒前
乐怡日尧完成签到,获得积分10
9秒前
10秒前
kiwi发布了新的文献求助10
11秒前
1212431发布了新的文献求助10
14秒前
樱桃超级大丸子完成签到,获得积分10
18秒前
18秒前
英姑应助Guoqiang采纳,获得10
22秒前
22秒前
苹果千柔发布了新的文献求助10
25秒前
李健的小迷弟应助lin采纳,获得10
26秒前
27秒前
洁净之柔发布了新的文献求助10
27秒前
chenhui发布了新的文献求助10
27秒前
achaia完成签到,获得积分10
30秒前
传奇3应助狂飙的小蜗牛采纳,获得30
31秒前
31秒前
科研通AI2S应助ZHANG123采纳,获得10
31秒前
33秒前
笙声发布了新的文献求助30
36秒前
36秒前
苹果千柔完成签到,获得积分20
37秒前
lin发布了新的文献求助10
39秒前
jiahao完成签到,获得积分10
42秒前
xyx完成签到,获得积分10
44秒前
斯文败类应助学术白菜采纳,获得10
47秒前
洁净之柔完成签到,获得积分10
47秒前
49秒前
岳莹晓完成签到 ,获得积分10
50秒前
丁丁完成签到,获得积分20
52秒前
53秒前
Guoqiang发布了新的文献求助10
53秒前
酷波er应助乐观的镜子采纳,获得10
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782187
求助须知:如何正确求助?哪些是违规求助? 3327590
关于积分的说明 10232533
捐赠科研通 3042546
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758844