亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards Real-Time Simulation of Flow Battery Models

计算机科学 电池(电) 流动电池 储能 电化学储能 网格 流量(数学) 比例(比率) 氧化还原 工艺工程 功率(物理) 工程类 电化学 材料科学 化学 超级电容器 物理化学 冶金 物理 量子力学 数学 电极 几何学
作者
Derek Rife,Sumitava De,Bharatkumar Suthar,Paul W. C. Northrop,Mayandi Ramanathan,Venkat R. Subramanian
出处
期刊:Meeting abstracts 卷期号:MA2014-01 (4): 387-387
标识
DOI:10.1149/ma2014-01/4/387
摘要

Renewed interest in large-scale electrochemical based energy storage in recent years has motivated efforts to accurately simulate redox flow systems(1). The ability of redox flow systems to decouple their power and energy capacities offers the possibility for large energy capacity scale up. These large capacity systems provide an opportunity to utilize these systems in a wide range of grid-scale applications. At present, though the choice of the chemistry, materials, and electrodes remains a matter of debate, it is useful to look at the design of redox flow systems using model-based approaches(2-4). For example, to meet power or voltage requirements, many redox flow batteries are stacked in series, parallel, or a combination of both. This can cause each cell to operate at different conditions (e.g., concentration, temperature, and potential). The battery energy storage system (BESS) responsible for managing the operation of the entire system will benefit from faster cell models that can predict the performance in real time to adjust for non-uniform conditions. In the past, we have shown how mathematical reformulation techniques can be used to reduce the computational time for simulating Lithium-ion batteries without sacrificing accuracy(5,6). These algorithms enable direct adaption of physics based models in the battery management system (BMS). A physics based BMS provides more functionality (e.g., predicts life) and enables a smaller footprint by allowing for aggressive but safe operating protocols. In this talk, we show how redox flow battery models can be reformulated for real-time analysis and optimization purposes. Both 1D and 2D models reported in the literature will be analyzed and reformulated(3,4,7-12). In our opinion, real-time physics based predictive models can play a critical role in BESS. Electrochemical storage in redox flow batteries requires a flow of electrolyte, which is stored in tanks independent of the electrodes. The associated flow coupled diffusion and electrochemical reactions require a much different approach to modeling compared to lithium-ion batteries; however, spectral methods are general enough to be useful for reformulation of redox flow systems, though the form of the trial functions used may change. Acknowledgements The authors acknowledge financial support by the National Science Foundation under grant numbers CBET-0828002, and CBET-1008692, and funds from Sun Edison. References 1. P. Leung, X. Li, C. Ponce de León, L. Berlouis, C. T. J. Low and F.C. Walsh, RSC Adv , 2 , 10125 (2012). 2. P. S. Fedkiw and R. W. Watts, J Electrochem Soc , 131 , 701 (1984). 3. D. P. Scamman, G. W. Reade and E. P. L. Roberts, J Power Sources , 189 , 1220 (2009). 4. D. P. Scamman, G. W. Reade and E. P. L. Roberts, J Power Sources , 189 , 1231 (2009). 5. P. W. C. Northrop, V. Ramadesigan, S. De and V. R. Subramanian, J Electrochem Soc , 158 , A1461 (2011). 6. V. R. Subramanian, V. Boovaragavan, V. Ramadesigan and M. Arabandi, J Electrochem Soc , 156 , A260 (2009). 7. A. A. Shah, R. Tangirala, R. Singh, R. G. A. Wills and F. C. Walsh, J Electrochem Soc , 158 , A671 (2011). 8. H. Al-Fetlawi, A. A. Shah and F. C. Walsh, Electrochim Acta , 55, 78 (2009). 9. H. Al-Fetlawi, A. A. Shah and F. C. Walsh, Electrochim Acta , 55 , 3192 (2010). 10. A. A. Shah, H. Al-Fetlawi and F. C. Walsh, Electrochim Acta , 55 , 1125 (2010). 11. A. A. Shah, M. J. Watt-Smith and F. C. Walsh, Electrochim Acta , 53 , 8087 (2008). 12. K. W. Knehr, E. Agar, C. R. Dennison, A. R. Kalidindi and E. C. Kumbur, J Electrochem Soc , 159 , A1446 (2012).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞飞style发布了新的文献求助10
4秒前
科研通AI6应助飞飞style采纳,获得10
18秒前
26秒前
有害学术辣鸡完成签到 ,获得积分10
45秒前
pegasus0802完成签到,获得积分10
57秒前
曦耀发布了新的文献求助30
1分钟前
完美世界应助西门晴采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
菜鸟学习完成签到 ,获得积分10
2分钟前
2分钟前
西门晴发布了新的文献求助10
2分钟前
汉堡包应助Jenny采纳,获得10
2分钟前
3分钟前
春夏爱科研完成签到,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
rrrrwq完成签到,获得积分20
4分钟前
rrrrwq发布了新的文献求助10
4分钟前
西门晴完成签到,获得积分10
4分钟前
飞飞style发布了新的文献求助10
4分钟前
谷之森完成签到,获得积分10
4分钟前
ccc完成签到 ,获得积分10
5分钟前
junjun2011完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
袁建波完成签到 ,获得积分10
6分钟前
Augustines完成签到,获得积分10
6分钟前
小巧的芙蓉完成签到,获得积分10
7分钟前
knight7m完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
桐桐应助眼睛大的松鼠采纳,获得10
8分钟前
脑洞疼应助危机的尔琴采纳,获得10
8分钟前
wangfaqing942完成签到 ,获得积分10
8分钟前
深情安青应助inRe采纳,获得10
8分钟前
wanci应助inRe采纳,获得10
9分钟前
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628431
求助须知:如何正确求助?哪些是违规求助? 4716950
关于积分的说明 14964262
捐赠科研通 4786167
什么是DOI,文献DOI怎么找? 2555660
邀请新用户注册赠送积分活动 1516899
关于科研通互助平台的介绍 1477502