长寿
生物
寿命
衰老自由基理论
氧化应激
氧化损伤
神经科学
老化
进化生物学
活性氧
遗传学
生物化学
作者
David Gems,Linda Partridge
标识
DOI:10.1146/annurev-physiol-030212-183712
摘要
Discovering the biological basis of aging is one of the greatest remaining challenges for science. Work on the biology of aging has discovered a range of interventions and pathways that control aging rate. A picture is emerging of a signaling network that is sensitive to nutritional status and that controls growth, stress resistance, and aging. This network includes the insulin/IGF-1 and target of rapamycin (TOR) pathways and likely mediates the effects of dietary restriction on aging. Yet the biological processes upon which these pathways act to control life span remain unclear. A long-standing guiding assumption about aging is that it is caused by wear and tear, particularly damage at the molecular level. One view is that reactive oxygen species (ROS), including free radicals, generated as by-products of cellular metabolism, are a major contributor to this damage. Yet many recent tests of the oxidative damage theory have come up negative. Such tests have opened an exciting new phase in biogerontology in which fundamental assumptions about aging are being reexamined and revolutionary concepts are emerging. Among these concepts is the hyperfunction theory, which postulates that processes contributing to growth and reproduction run on in later life, leading to hypertrophic and hyperplastic pathologies. Here we reexamine central concepts about the nature of aging.
科研通智能强力驱动
Strongly Powered by AbleSci AI