Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China

水土评价工具 马尔科夫蒙特卡洛 不确定度分析 胶水 计算机科学 贝叶斯概率 似然函数 不确定度量化 贝叶斯推理 计量经济学 统计 估计理论 数学 算法 流域 机器学习 人工智能 地理 材料科学 地图学 水流 复合材料
作者
Jing Yang,Peter Reichert,Karim C. Abbaspour,Jun Xia,Hong Yang
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:358 (1-2): 1-23 被引量:653
标识
DOI:10.1016/j.jhydrol.2008.05.012
摘要

Distributed watershed models are increasingly being used to support decisions about alternative management strategies in the areas of land use change, climate change, water allocation, and pollution control. For this reason it is important that these models pass through a careful calibration and uncertainty analysis. To fulfil this demand, in recent years, scientists have come up with various uncertainty analysis techniques for watershed models. To determine the differences and similarities of these techniques we compared five uncertainty analysis procedures: Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol), Sequential Uncertainty FItting algorithm (SUFI-2), and a Bayesian framework implemented using Markov chain Monte Carlo (MCMC) and Importance Sampling (IS) techniques. As these techniques are different in their philosophies and leave the user some freedom in formulating the generalized likelihood measure, objective function, or likelihood function, a literal comparison between these techniques is not possible. As there is a small spectrum of different applications in hydrology for the first three techniques, we made this choice according to their typical use in hydrology. For Bayesian inference, we used a recently developed likelihood function that does not obviously violate the statistical assumptions, namely a continuous-time autoregressive error model. We implemented all these techniques for the soil and water assessment tool (SWAT) and applied them to the Chaohe Basin in China. We compared the results with respect to the posterior parameter distributions, performances of their best estimates, prediction uncertainty, conceptual bases, computational efficiency, and difficulty of implementation. The comparison results for these categories are listed and the advantages and disadvantages are analyzed. From the point of view of the authors, if computationally feasible, Bayesian-based approaches are most recommendable because of their solid conceptual basis, but construction and test of the likelihood function requires critical attention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
很牛的ID完成签到,获得积分20
4秒前
小吃完成签到,获得积分10
6秒前
SCIfafafafa发布了新的文献求助10
7秒前
不爱科研的科研小菜鸡完成签到,获得积分20
7秒前
张颖完成签到 ,获得积分10
7秒前
aa发布了新的文献求助10
8秒前
pluto应助xxhhh采纳,获得10
8秒前
很牛的ID发布了新的文献求助20
8秒前
tengfei应助真实的静珊采纳,获得10
9秒前
9秒前
12秒前
保安队长发布了新的文献求助10
12秒前
xxx7749发布了新的文献求助10
15秒前
16秒前
超级诗桃发布了新的文献求助10
17秒前
科研小白发布了新的文献求助10
18秒前
wxy发布了新的文献求助10
20秒前
Lucas应助雪山飞龙采纳,获得10
21秒前
SZ完成签到,获得积分20
22秒前
PLN完成签到 ,获得积分20
23秒前
23秒前
24秒前
tjxhtj完成签到,获得积分10
24秒前
25秒前
luckytuantuan发布了新的文献求助10
26秒前
大模型应助123采纳,获得10
26秒前
qqy发布了新的文献求助10
27秒前
斯文天曼发布了新的文献求助10
28秒前
海心完成签到 ,获得积分10
30秒前
kk关闭了kk文献求助
30秒前
雪山飞龙完成签到,获得积分10
30秒前
文都哲发布了新的文献求助10
31秒前
CYB完成签到,获得积分10
31秒前
Denning完成签到,获得积分10
32秒前
ningqing完成签到,获得积分10
33秒前
CipherSage应助YYL采纳,获得10
33秒前
34秒前
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781475
求助须知:如何正确求助?哪些是违规求助? 3327071
关于积分的说明 10229393
捐赠科研通 3041969
什么是DOI,文献DOI怎么找? 1669742
邀请新用户注册赠送积分活动 799258
科研通“疑难数据库(出版商)”最低求助积分说明 758757