An End-to-End Deep Learning Approach to Simultaneous Speech Dereverberation and Acoustic Modeling for Robust Speech Recognition

计算机科学 语音识别 语音增强 话筒 混响 判别式 语音处理 人工神经网络 水准点(测量) 声学模型 语音活动检测 深度学习 字错误率 人工智能 降噪 声学 电信 物理 大地测量学 声压 地理
作者
Bo Wu,Kehuang Li,Fengpei Ge,Zhen Huang,Minglei Yang,Sabato Marco Siniscalchi,Chin‐Hui Lee
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:11 (8): 1289-1300 被引量:73
标识
DOI:10.1109/jstsp.2017.2756439
摘要

We propose an integrated end-to-end automatic speech recognition (ASR) paradigm by joint learning of the front-end speech signal processing and back-end acoustic modeling. We believe that "only good signal processing can lead to top ASR performance" in challenging acoustic environments. This notion leads to a unified deep neural network (DNN) framework for distant speech processing that can achieve both high-quality enhanced speech and high-accuracy ASR simultaneously. Our goal is accomplished by two techniques, namely: (i) a reverberation-time-aware DNN based speech dereverberation architecture that can handle a wide range of reverberation times to enhance speech quality of reverberant and noisy speech, followed by (ii) DNN-based multicondition training that takes both clean-condition and multicondition speech into consideration, leveraging upon an exploitation of the data acquired and processed with multichannel microphone arrays, to improve ASR performance. The final end-to-end system is established by a joint optimization of the speech enhancement and recognition DNNs. The recent REverberant Voice Enhancement and Recognition Benchmark (REVERB) Challenge task is used as a test bed for evaluating our proposed framework. We first report on superior objective measures in enhanced speech to those listed in the 2014 REVERB Challenge Workshop on the simulated data test set. Moreover, we obtain the best single-system word error rate (WER) of 13.28% on the 1-channel REVERB simulated data with the proposed DNN-based pre-processing algorithm and clean-condition training. Leveraging upon joint training with more discriminative ASR features and improved neural network based language models, a low single-system WER of 4.46% is attained. Next, a new multi-channel-condition joint learning and testing scheme delivers a state-of-the-art WER of 3.76% on the 8-channel simulated data with a single ASR system. Finally, we also report on a preliminary yet promising experimentation with the REVERB real test data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
一期一发布了新的文献求助10
刚刚
我不到啊完成签到,获得积分10
1秒前
2秒前
周星星完成签到 ,获得积分10
3秒前
高子懿完成签到,获得积分10
3秒前
3秒前
5秒前
5秒前
多宝鱼发布了新的文献求助10
7秒前
ceeray23应助ilc采纳,获得10
9秒前
9秒前
ddddd发布了新的文献求助10
9秒前
gf发布了新的文献求助10
10秒前
10秒前
高兴的土豆关注了科研通微信公众号
10秒前
红柚完成签到,获得积分10
12秒前
12秒前
顾矜应助dengdeng采纳,获得10
13秒前
华仔应助emile采纳,获得10
16秒前
红柚发布了新的文献求助10
16秒前
娃哈哈完成签到,获得积分10
18秒前
英吉利25发布了新的文献求助10
18秒前
Llllllllily完成签到,获得积分10
20秒前
ZZB完成签到,获得积分10
20秒前
20秒前
动听白秋完成签到 ,获得积分10
21秒前
酷波er应助ilc采纳,获得10
21秒前
刻苦的绿真完成签到 ,获得积分10
24秒前
我测你码发布了新的文献求助10
24秒前
小田田完成签到 ,获得积分10
24秒前
27秒前
28秒前
29秒前
浮游应助婷婷采纳,获得10
30秒前
慕辰完成签到 ,获得积分10
30秒前
31秒前
费宇程完成签到,获得积分10
31秒前
32秒前
Ffffff发布了新的文献求助10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495384
求助须知:如何正确求助?哪些是违规求助? 4593053
关于积分的说明 14439596
捐赠科研通 4525892
什么是DOI,文献DOI怎么找? 2479779
邀请新用户注册赠送积分活动 1464570
关于科研通互助平台的介绍 1437425