干细胞
生物
细胞生物学
重编程
骨骼肌
组蛋白
染色质
染色质免疫沉淀
转录组
转录因子
细胞
生物化学
基因表达
基因
内分泌学
发起人
作者
James G. Ryall,Gordon S. Lynch
标识
DOI:10.1097/mco.0000000000000472
摘要
To discuss how innate muscle stem-cell metabolism and nutrient availability can provide temporal regulation of chromatin accessibility and transcription.Fluorescence-activated cell sorting coupled with whole transcriptome sequencing revealed for the first time that quiescent and proliferating skeletal muscle stem cells exhibit a process of metabolic reprogramming, from fatty-acid oxidation during quiescence to glycolysis during proliferation. Using a combination of immunofluorescence and chromatin immunoprecipitation sequencing, this shift in metabolism has been linked to altered availability of key metabolites essential for histone (de)acetylation and (de)methylation, including acetyl-CoA, s-adenosylmethionine and α-ketoglutarate. Importantly, these changes in metabolite availability have been linked to muscle stem-cell function.Together, these results provide greater insight into how muscle stem cells interact with their local environment, with important implications for metabolic diseases, skeletal muscle regeneration and cell-transplantation therapies.
科研通智能强力驱动
Strongly Powered by AbleSci AI