Multimodal deep learning framework integrating multiphase CT and histopathological whole slide imaging for predicting recurrence in ccRCC

作者
Changyi Ma,Bao Feng,Yan Lei,Zhaole Yu,Yu Liu,Jin Cui,Rong Gang Li,Xiufang Huang,Bai-Ming Wu,Zhixin LUO,Enming Cui
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1): 41284-41284
标识
DOI:10.1038/s41598-025-25109-x
摘要

ccRCC is an aggressive, heterogeneous tumor with a poor prognosis. Prognostic assessments need multi-modal data. Radiological images have limits, while pathological images offer micro-level details. Integrating these for ccRCC outcome prediction is important. Our study aimed to develop and validate a DL fusion model using multiphase CT images and WSI for postoperative risk stratification in ccRCC patients. This retrospective study included 274 ccRCC patients who underwent multiphase CT scans (Jan 2008-Mar 2021), with diagnoses confirmed by histopathology post-surgery. The patient cohort was divided into a training cohort of 164 patients for model development and a test cohort of 110 patients for model validation. The primary outcome was local recurrence or metastasis versus non-recurrence (NR) with a minimum follow-up of 3 years. DL models based on multiphase CT images and histopathological WSIs were developed and validated. Performance comparisons among models were made through accuracy (ACC) and receiver operating characteristic (ROC) curve analyses, with integrated discrimination improvement (IDI) analysis and the DeLong test assessing diagnostic performance. Decision curve analysis (DCA) evaluated clinical utility, and Kaplan-Meier analysis assessed variable-survival correlations. The CT and Pathology Mutual Guidance Fusion Diagnostic Network (CPNet) exhibited superior performance in predicting postoperative disease-free survival (DFS) in ccRCC patients. Among the models, the PCP-Pathology Fuse model achieved the highest AUC of 0.8363 and accuracy of 75.45%, outperforming the CMP-Pathology Fuse (AUC 0.7965, ACC 69.09%) and NP-Pathology Fuse (AUC 0.798, ACC 69.09%) models. Its performance was comparable to the Three-phase-Pathology Fuse model (AUC 0.8341, ACC 70.00%, P > 0.05). IDI and DCA confirmed significant net benefits (0.01-0.95) for the PCP-based model. The PCP-based CPNet model shows promise for predicting postoperative DFS in ccRCC patients, with performance comparable to three-phase CT-pathology models. It may serve as a potential bioimaging prognostic marker, pending external validation to support clinical integration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
4秒前
超帅雅蕊给超帅雅蕊的求助进行了留言
5秒前
Yaon-Xu发布了新的文献求助30
7秒前
开心逊发布了新的文献求助10
8秒前
在水一方应助小白采纳,获得10
8秒前
穷极一生完成签到,获得积分10
8秒前
panxixiang完成签到,获得积分20
8秒前
Apeng发布了新的文献求助10
9秒前
丘比特应助C_采纳,获得10
11秒前
11秒前
kento发布了新的文献求助50
12秒前
隐形曼青应助qqqq07采纳,获得10
12秒前
儒雅的斑马完成签到,获得积分10
13秒前
穷极一生发布了新的文献求助10
13秒前
13秒前
gzupppp完成签到,获得积分10
14秒前
15秒前
15秒前
幽默的含莲完成签到 ,获得积分10
16秒前
FashionBoy应助良仑采纳,获得10
17秒前
小吴同学发布了新的文献求助10
17秒前
忆南发布了新的文献求助10
17秒前
18秒前
18秒前
贾南烟完成签到,获得积分20
18秒前
调皮的千万完成签到,获得积分10
19秒前
gzupppp发布了新的文献求助10
19秒前
晴子发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
22秒前
23秒前
开心逊关注了科研通微信公众号
23秒前
丘比特应助liuzengzhang666采纳,获得10
23秒前
Xiaoxiao应助远方采纳,获得10
24秒前
情怀应助高中生采纳,获得100
24秒前
豆子发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312188
求助须知:如何正确求助?哪些是违规求助? 4455976
关于积分的说明 13864983
捐赠科研通 4344392
什么是DOI,文献DOI怎么找? 2385837
邀请新用户注册赠送积分活动 1380209
关于科研通互助平台的介绍 1348565