Underwater salient object detection by combining 2D and 3D visual features

水下 突出 人工智能 计算机科学 计算机视觉 特征(语言学) 目标检测 对象(语法) 模式识别(心理学) 适应性 地质学 生态学 语言学 生物 海洋学 哲学
作者
Zhe Chen,Hongmin Gao,Zhen Zhang,Helen Zhou,Xun Wang,Yan Tian
出处
期刊:Neurocomputing [Elsevier]
卷期号:391: 249-259 被引量:40
标识
DOI:10.1016/j.neucom.2018.10.089
摘要

Automatic salient object detection over images is an important step for object detection and recognition. Many existing salient object detection methods are performed excellently on ground, but, it remains a challenge to detect salient objects in water. Different from common scenes on ground, challenges to underwater salient object detection are posed by poor underwater image quality, uncontrolled underwater objects and environments. Till now, most of existing methods are hindered from adaptability to difficult underwater environments, due to the strong light attenuation and scattering effects. To this end, we propose a novel underwater salient object detection method by combining 2D and 3D visual features. For feature combination, a novel detection model is established by mathematically stimulating the biological vision mechanism of aquatic animals. This model, apart from the 2D visual features i.e. the color and intensity, extracts 3D depth features to arouse the depth sensitivity in the three-dimensional space. These 2D and 3D visual features are combined by our biologically inspirited model, generating comprehensive salient object detection results. Here, aiming to correctly estimate 3D depth features from underwater images, a regional method is used to respectively extract 3D depth features in two regions, namely the artificial light and natural light regions. Evaluations show the diverse and comprehensive performances of various features for underwater salient object detection. High accuracy of our proposed method is demonstrated by comparing to state-of-the-art saliency detection methods on public underwater benchmarks acquired in diverse underwater environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Auoroa完成签到,获得积分10
6秒前
司空褚完成签到 ,获得积分10
6秒前
CHAUSU完成签到 ,获得积分10
7秒前
8秒前
ffw1完成签到,获得积分10
10秒前
12秒前
13秒前
Zjn-发布了新的文献求助10
13秒前
15秒前
固的曼完成签到,获得积分10
16秒前
狂野的尔风完成签到,获得积分10
16秒前
17秒前
晶镓万岁发布了新的文献求助10
21秒前
JamesPei应助Jere采纳,获得20
23秒前
24秒前
26秒前
wanci应助sfliufighting采纳,获得10
26秒前
27秒前
28秒前
28秒前
29秒前
孙友浩发布了新的文献求助10
31秒前
口外彭于晏完成签到,获得积分10
31秒前
32秒前
ceeray23应助paipai2采纳,获得10
33秒前
Huan发布了新的文献求助40
34秒前
34秒前
与山完成签到,获得积分10
35秒前
所所应助段醒醒采纳,获得10
36秒前
云水雾心完成签到,获得积分20
36秒前
那晚的风完成签到,获得积分20
36秒前
柯语雪完成签到 ,获得积分10
38秒前
李健的小迷弟应助auggy采纳,获得10
39秒前
superscience完成签到 ,获得积分10
42秒前
情怀应助houshyari采纳,获得10
42秒前
在水一方应助那晚的风采纳,获得10
44秒前
周舟完成签到 ,获得积分10
46秒前
qaq完成签到,获得积分10
50秒前
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557634
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668874
捐赠科研通 4584158
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488842
关于科研通互助平台的介绍 1459533