Characterization of Key Aroma Compounds in a Commercial Rum and an Australian Red Wine by Means of a New Sensomics-Based Expert System (SEBES)—An Approach To Use Artificial Intelligence in Determining Food Odor Codes

芳香 气味 葡萄酒 嗅觉测定 食品科学 化学 感官分析 生化工程 工程类 有机化学
作者
Luca Nicolotti,Veronika Mall,Peter Schieberle
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:67 (14): 4011-4022 被引量:67
标识
DOI:10.1021/acs.jafc.9b00708
摘要

Although to date more than 10 000 volatile compounds have been characterized in foods, a literature survey has previously shown that only 226 aroma compounds, assigned as key food odorants (KFOs), have been identified to actively contribute to the overall aromas of about 200 foods, such as beverages, meat products, cheeses, or baked goods. Currently, a multistep analytical procedure involving the human olfactory system, assigned as Sensomics, represents a reference approach to identify and quantitate key odorants, as well as to define their sensory impact in the overall food aroma profile by so-called aroma recombinates. Despite its proven effectiveness, the Sensomics approach is time-consuming because repeated sensory analyses, for example, by GC/olfactometry, are essential to assess the odor quality and potency of each single constituent in a given food distillate. Therefore, the aim of the present study was to develop a fast, but Sensomics-based expert system (SEBES) that is able to reliably predict the key aroma compounds of a given food in a limited number of runs without using the human olfactory system. First, a successful method for the quantitation of nearly 100 (out of the 226 known KFOs) components was developed in combination with a software allowing the direct use of the identification and quantitation data for the calculation of odor activity values (OAV; ratio of concentration to odor threshold). Using a rum and a wine as examples, the quantitative results obtained by the new SEBES method were compared to data obtained by applying an aroma extract dilution analysis and stable isotope dilution assays required in the classical Sensomics approach. A good agreement of the results was found with differences below 20% for most of the compounds considered. By implementing the GC × GC data analysis software with the in-house odor threshold database, odor activity values (ratio of concentration to odor threshold) were directly displayed in the software pane. The OAVs calculated by the software were in very good agreement with data manually calculated on the basis of the data obtained by SIDA. Thus, it was successfully shown that it is possible to characterize key food odorants with one single analytical platform and without using the human olfactory system, that is, by "artificial intelligence smelling".
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小青椒应助小凯采纳,获得20
1秒前
彗星入梦完成签到 ,获得积分10
4秒前
zhd103完成签到,获得积分10
4秒前
uu完成签到,获得积分10
4秒前
宁天问发布了新的文献求助10
4秒前
6秒前
FashionBoy应助小包包采纳,获得10
7秒前
7秒前
温柔雨筠完成签到,获得积分10
8秒前
huan完成签到,获得积分10
9秒前
Jasper应助历代星辰采纳,获得10
9秒前
桐桐应助呆萌的兔子采纳,获得10
9秒前
哈利波特大完成签到,获得积分10
9秒前
慧慧发布了新的文献求助10
9秒前
酷波er应助uu采纳,获得10
10秒前
风生完成签到,获得积分10
10秒前
肉肉发布了新的文献求助30
11秒前
Hello应助你是我的唯一采纳,获得10
11秒前
11秒前
Fantast发布了新的文献求助10
11秒前
12秒前
xfye发布了新的文献求助20
12秒前
abjz完成签到,获得积分10
14秒前
小杭76应助xxm采纳,获得10
14秒前
cc完成签到,获得积分10
15秒前
16秒前
拼搏煎蛋发布了新的文献求助10
17秒前
拉长的博超完成签到,获得积分10
18秒前
19秒前
brwen发布了新的文献求助10
19秒前
20秒前
ajiang完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
充电宝应助悦雨采纳,获得10
22秒前
woca完成签到,获得积分10
22秒前
Luelin完成签到 ,获得积分10
23秒前
orixero应助张张采纳,获得10
25秒前
25秒前
飒saus发布了新的文献求助10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424904
求助须知:如何正确求助?哪些是违规求助? 4539183
关于积分的说明 14165914
捐赠科研通 4456291
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435170
关于科研通互助平台的介绍 1412492