已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Social inequalities in neighborhood visual walkability: Using street view imagery and deep learning technologies to facilitate healthy city planning

可行走性 人工智能 计算机科学 聚类分析 城市规划 建筑环境 深度学习 机器学习 数据科学 工程类 土木工程
作者
Hao Zhou,Shenjing He,Yuyang Cai,Miao Wang,Shiliang Su
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:50: 101605-101605 被引量:186
标识
DOI:10.1016/j.scs.2019.101605
摘要

It is of great significance both in theory and in practice to propose an efficient approach to approximating visual walkability given urban residents' growing leisure needs. Recent advancements in sensing and computing technologies provide new opportunities in this regard. This paper first proposes a conceptual framework for understanding street visual walkability and then employs deep learning technologies to segment and extract physical features from Baidu Map Street View (BMSV) imagery using the case of Shenzhen City in China. Guided by this framework, four indicators are calculated based on the segmented imagery and further integrated into the visual walkability index (VWI), whose reliability is validated through manual interpretation and a subjective scoring experiment. Our results show that deep learning technologies achieve higher accuracy in segmenting street view imagery than the traditional K-means clustering algorithm and support vector machine algorithm. Moreover, the developed VWI is effective to measure visual walkability, and it presents great heterogeneity across streets within Shenzhen. Spatial regression further identifies that significant social inequalities are associated with neighborhood visual walkability. According to the findings, implications and suggestions on planning the healthy city are proposed. The methodological procedure is reduplicative and can be applied to other unfeasible or challenging cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
junkook完成签到 ,获得积分10
6秒前
科目三应助Tia采纳,获得10
11秒前
江小白完成签到,获得积分0
12秒前
磊少完成签到 ,获得积分10
13秒前
21秒前
王者归来完成签到,获得积分10
22秒前
zy完成签到,获得积分10
22秒前
Muniira发布了新的文献求助10
27秒前
今后应助风华正茂采纳,获得30
28秒前
凡可可发布了新的文献求助10
30秒前
34秒前
36秒前
英姑应助VDC采纳,获得10
37秒前
jiaobu发布了新的文献求助10
40秒前
魏立翔发布了新的文献求助10
41秒前
风华正茂完成签到,获得积分20
41秒前
魏立翔完成签到,获得积分10
50秒前
NexusExplorer应助拼搏流沙采纳,获得30
58秒前
Muniira完成签到,获得积分10
1分钟前
甜甜的以筠完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
拼搏流沙发布了新的文献求助30
1分钟前
沿途有你完成签到 ,获得积分10
1分钟前
liujx发布了新的文献求助10
1分钟前
闪闪蜜粉完成签到 ,获得积分10
1分钟前
从容成危完成签到 ,获得积分10
1分钟前
SPUwangshunfeng完成签到,获得积分10
1分钟前
1分钟前
彭语梦发布了新的文献求助10
1分钟前
M3L2完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792399
求助须知:如何正确求助?哪些是违规求助? 3336687
关于积分的说明 10281839
捐赠科研通 3053411
什么是DOI,文献DOI怎么找? 1675608
邀请新用户注册赠送积分活动 803571
科研通“疑难数据库(出版商)”最低求助积分说明 761457