DeepFunc: A Deep Learning Framework for Accurate Prediction of Protein Functions from Protein Sequences and Interactions

水准点(测量) 计算机科学 蛋白质测序 深度学习 人工智能 编码 计算生物学 蛋白质功能 注释 人工神经网络 序列(生物学) 功能(生物学) 机器学习 蛋白质功能预测 生物 模式识别(心理学) 肽序列 基因 遗传学 地理 大地测量学
作者
Fuhao Zhang,Hong Song,Min Zeng,Yaohang Li,Lukasz Kurgan,Min Li
出处
期刊:Proteomics [Wiley]
卷期号:19 (12) 被引量:74
标识
DOI:10.1002/pmic.201900019
摘要

Abstract Annotation of protein functions plays an important role in understanding life at the molecular level. High‐throughput sequencing produces massive numbers of raw proteins sequences and only about 1% of them have been manually annotated with functions. Experimental annotations of functions are expensive, time‐consuming and do not keep up with the rapid growth of the sequence numbers. This motivates the development of computational approaches that predict protein functions. A novel deep learning framework, DeepFunc, is proposed which accurately predicts protein functions from protein sequence‐ and network‐derived information. More precisely, DeepFunc uses a long and sparse binary vector to encode information concerning domains, families, and motifs collected from the InterPro tool that is associated with the input protein sequence. This vector is processed with two neural layers to obtain a low‐dimensional vector which is combined with topological information extracted from protein–protein interactions (PPIs) and functional linkages. The combined information is processed by a deep neural network that predicts protein functions. DeepFunc is empirically and comparatively tested on a benchmark testing dataset and the Critical Assessment of protein Function Annotation algorithms (CAFA) 3 dataset. The experimental results demonstrate that DeepFunc outperforms current methods on the testing dataset and that it secures the highest F max = 0.54 and AUC = 0.94 on the CAFA3 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海德堡发布了新的文献求助10
1秒前
Orange应助hy采纳,获得10
1秒前
1秒前
子衿发布了新的文献求助10
2秒前
2秒前
黎少俊发布了新的文献求助10
2秒前
Jasper应助峰林采纳,获得10
2秒前
一只椰青完成签到,获得积分20
2秒前
ZCY关注了科研通微信公众号
3秒前
4秒前
bobowang发布了新的文献求助10
4秒前
5秒前
屾哥发布了新的文献求助10
6秒前
Akim应助nnm采纳,获得10
7秒前
8秒前
不摇碧莲完成签到 ,获得积分10
8秒前
8秒前
玉1完成签到 ,获得积分10
9秒前
11秒前
11秒前
Massback发布了新的文献求助10
12秒前
12秒前
12秒前
今后应助xiaoxin采纳,获得10
12秒前
玉1关注了科研通微信公众号
13秒前
桐桐应助黎少俊采纳,获得10
13秒前
鸭梨很大发布了新的文献求助10
13秒前
14秒前
15秒前
英俊的铭应助美丽荣轩采纳,获得50
15秒前
15秒前
Hz完成签到,获得积分10
15秒前
自信安荷完成签到,获得积分10
15秒前
神秘玩家完成签到,获得积分10
16秒前
16秒前
ddli发布了新的文献求助10
16秒前
Murphy发布了新的文献求助10
17秒前
张晓天发布了新的文献求助10
17秒前
YinchenChen发布了新的文献求助10
17秒前
关显锋发布了新的文献求助10
17秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799006
求助须知:如何正确求助?哪些是违规求助? 3344720
关于积分的说明 10321316
捐赠科研通 3061197
什么是DOI,文献DOI怎么找? 1680067
邀请新用户注册赠送积分活动 806880
科研通“疑难数据库(出版商)”最低求助积分说明 763435