Comparison of computational methods for imputing single-cell RNA-sequencing data

不可用 计算机科学 插补(统计学) 稳健性(进化) 可扩展性 贝叶斯概率 数据挖掘 聚类分析 缺少数据 辍学(神经网络) 人工智能 机器学习 生物 基因 数学 统计 数据库 生物化学
作者
Lihua Zhang,Shihua Zhang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:124
标识
DOI:10.1109/tcbb.2018.2848633
摘要

Single-cell RNA-sequencing (scRNA-seq) is a recent breakthrough technology, which paves the way for measuring RNA levels at single cell resolution to study precise biological functions. One of the main challenges when analyzing scRNA-seq data is the presence of zeros or dropout events, which may mislead downstream analyses. To compensate the dropout effect, several methods have been developed to impute gene expression since the first Bayesian-based method being proposed in 2016. However, these methods have shown very diverse characteristics in terms of model hypothesis and imputation performance. Thus, large-scale comparison and evaluation of these methods is urgently needed now. To this end, we compared eight imputation methods, evaluated their power in recovering original real data, and performed broad analyses to explore their effects on clustering cell types, detecting differentially expressed genes, and reconstructing lineage trajectories in the context of both simulated and real data. Simulated datasets and case studies highlight that there are no one method performs the best in all the situations. Some defects of these methods such as scalability, robustness, and unavailability in some situations need to be addressed in future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
定烜完成签到,获得积分10
刚刚
laohu2发布了新的文献求助10
1秒前
1秒前
1秒前
王哪跑12发布了新的文献求助10
1秒前
乐观惜萱发布了新的文献求助10
1秒前
2秒前
子车茗应助雨墨幻山采纳,获得30
2秒前
2秒前
2秒前
dahuihui发布了新的文献求助10
2秒前
3秒前
迷人宛发布了新的文献求助10
4秒前
5秒前
呼呼被吹跑完成签到,获得积分10
5秒前
kou发布了新的文献求助10
5秒前
zhanzhanzhan发布了新的文献求助10
7秒前
静静完成签到 ,获得积分10
7秒前
RONG发布了新的文献求助10
8秒前
9秒前
攀攀完成签到,获得积分10
10秒前
典雅凌蝶完成签到,获得积分10
10秒前
隐形曼青应助子慕i采纳,获得10
11秒前
凶狠的葶完成签到,获得积分10
11秒前
11秒前
chen完成签到,获得积分10
12秒前
SZY发布了新的文献求助10
14秒前
搞怪的雨南完成签到,获得积分10
14秒前
zwl发布了新的文献求助10
15秒前
zzz发布了新的文献求助20
15秒前
16秒前
慕青应助虚幻青曼采纳,获得10
16秒前
顺利凌文发布了新的文献求助10
16秒前
gloval发布了新的文献求助30
17秒前
17秒前
17秒前
鱼丸完成签到,获得积分10
19秒前
彭于晏应助元谷雪采纳,获得10
20秒前
20秒前
机智电脑发布了新的文献求助10
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809284
求助须知:如何正确求助?哪些是违规求助? 3353956
关于积分的说明 10367862
捐赠科研通 3070201
什么是DOI,文献DOI怎么找? 1686083
邀请新用户注册赠送积分活动 810806
科研通“疑难数据库(出版商)”最低求助积分说明 766384