Analysis of k-Fold Cross-Validation over Hold-Out Validation on Colossal Datasets for Quality Classification

交叉验证 计算机科学 模型验证 理想(伦理) 质量(理念) 数据挖掘 价值(数学) 折叠(高阶函数) 人工智能 机器学习 数据科学 认识论 哲学 程序设计语言
作者
Sanjay Yadav,Sanyam Shukla
出处
期刊:International Conference on Advanced Computing 被引量:231
标识
DOI:10.1109/iacc.2016.25
摘要

While training a model with data from a dataset, we have to think of an ideal way to do so. The training should be done in such a way that while the model has enough instances to train on, they should not over-fit the model and at the same time, it must be considered that if there are not enough instances to train on, the model would not be trained properly and would give poor results when used for testing. Accuracy is important when it comes to classification and one must always strive to achieve the highest accuracy, provided there is not trade off with inexcusable time. While working on small datasets, the ideal choices are k-fold cross-validation with large value of k (but smaller than number of instances) or leave-one-out cross-validation whereas while working on colossal datasets, the first thought is to use holdout validation, in general. This article studies the differences between the two validation schemes, analyzes the possibility of using k-fold cross-validation over hold-out validation even on large datasets. Experimentation was performed on four large datasets and results show that till a certain threshold, k-fold cross-validation with varying value of k with respect to number of instances can indeed be used over hold-out validation for quality classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科目三应助长安采纳,获得10
1秒前
1秒前
2秒前
rubyyuan8006发布了新的文献求助10
2秒前
心悦臣服发布了新的文献求助10
2秒前
3秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
诸嵩发布了新的文献求助10
6秒前
8秒前
姚三斤发布了新的文献求助10
8秒前
xxx发布了新的文献求助10
10秒前
11秒前
香蕉觅云应助高大头采纳,获得10
13秒前
加菲丰丰完成签到,获得积分0
14秒前
15秒前
15秒前
sw完成签到,获得积分10
15秒前
姚三斤完成签到,获得积分10
15秒前
淡dan发布了新的文献求助10
16秒前
16秒前
闪闪芯完成签到 ,获得积分10
17秒前
xxx完成签到,获得积分10
18秒前
ACE发布了新的文献求助10
21秒前
crystal发布了新的文献求助10
21秒前
小猴完成签到,获得积分10
22秒前
华仔应助luckly采纳,获得10
22秒前
saxon_zhang发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
打打应助塇塇采纳,获得10
25秒前
Epiphany完成签到 ,获得积分10
25秒前
Gpu_broken发布了新的文献求助30
25秒前
超帅怜阳完成签到,获得积分10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5096447
求助须知:如何正确求助?哪些是违规求助? 4309168
关于积分的说明 13426309
捐赠科研通 4136267
什么是DOI,文献DOI怎么找? 2266010
邀请新用户注册赠送积分活动 1269252
关于科研通互助平台的介绍 1205492