单宁酸
化学
纳米颗粒
透明质酸
抗坏血酸
抗菌剂
水解
儿茶酚
核化学
组合化学
有机化学
纳米技术
食品科学
遗传学
生物
材料科学
作者
Elita Montanari,Arianna Gennari,Maria Pelliccia,Charlotte Gourmel,Enrique Lallana,Pietro Matricardi,Andrew J. McBain,Nicola Tirelli
标识
DOI:10.1002/mabi.201600311
摘要
Nanoparticles based on hyaluronic acid (HA) are designed to deliver tannic acid (TA) as an antimicrobial agent. The presence of HA makes these particles potentially useful to target bacteria that colonize cells presenting HA membrane receptors (e.g. CD44), such as macrophages. HA bearing 3‐aminophenyl boronic acid groups (HA‐APBA) is reacted with TA, yielding nanoparticles with a size that decreases with decreasing HA molecular weight (e.g. 200 nm for 44 kDa, 400 nm for 737 kDa). The boronate esters make the nanoparticles stable at physiological pH, but their hydrolysis in an acidic environment (pH = 5) leads to swelling/solubilization, therefore potentially allowing TA release in endosomal compartments. We have assessed the nanoparticle toxicity profile (on RAW 264.7 macrophages) and their antimicrobial activity (on E. coli and on both methicillin‐sensitive and ‐resistant S. aureus ). The antibacterial effect of HA‐APBA/TA nanoparticles was significantly higher than that of TA alone, and has very similar activity to TA coformulated with a reducing agent (ascorbic acid), which indicates both the nanoparticles to protect TA catechols from oxidation, and the effective release of TA after nanoparticle internalization. Therefore, there is potential for these nanoparticles to be used in stable, effective, and potentially targetable nanoparticle‐based antimicrobial formulations. image
科研通智能强力驱动
Strongly Powered by AbleSci AI