亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

In Silico Prediction of Physicochemical Properties of Environmental Chemicals Using Molecular Fingerprints and Machine Learning

数量结构-活动关系 化学信息学 工作流程 适用范围 计算机科学 分子描述符 一套 生化工程 生物信息学 机器学习 化学 数据挖掘 数据库 计算化学 工程类 考古 基因 历史 生物化学
作者
Qingda Zang,Kamel Mansouri,Antony Williams,Richard Judson,David Allen,Warren Casey,Nicole Kleinstreuer
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:57 (1): 36-49 被引量:165
标识
DOI:10.1021/acs.jcim.6b00625
摘要

There are little available toxicity data on the vast majority of chemicals in commerce. High-throughput screening (HTS) studies, such as those being carried out by the U.S. Environmental Protection Agency (EPA) ToxCast program in partnership with the federal Tox21 research program, can generate biological data to inform models for predicting potential toxicity. However, physicochemical properties are also needed to model environmental fate and transport, as well as exposure potential. The purpose of the present study was to generate an open-source quantitative structure–property relationship (QSPR) workflow to predict a variety of physicochemical properties that would have cross-platform compatibility to integrate into existing cheminformatics workflows. In this effort, decades-old experimental property data sets available within the EPA EPI Suite were reanalyzed using modern cheminformatics workflows to develop updated QSPR models capable of supplying computationally efficient, open, and transparent HTS property predictions in support of environmental modeling efforts. Models were built using updated EPI Suite data sets for the prediction of six physicochemical properties: octanol–water partition coefficient (logP), water solubility (logS), boiling point (BP), melting point (MP), vapor pressure (logVP), and bioconcentration factor (logBCF). The coefficient of determination (R2) between the estimated values and experimental data for the six predicted properties ranged from 0.826 (MP) to 0.965 (BP), with model performance for five of the six properties exceeding those from the original EPI Suite models. The newly derived models can be employed for rapid estimation of physicochemical properties within an open-source HTS workflow to inform fate and toxicity prediction models of environmental chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
6秒前
TopBanana完成签到 ,获得积分10
10秒前
勤恳冰淇淋完成签到 ,获得积分10
10秒前
zh发布了新的文献求助10
10秒前
史前巨怪完成签到,获得积分10
13秒前
28秒前
zh完成签到,获得积分10
28秒前
甜蜜乐松发布了新的文献求助10
34秒前
37秒前
39秒前
胖墩墩完成签到 ,获得积分10
41秒前
xiaolang2004完成签到,获得积分10
42秒前
爱笑若冰发布了新的文献求助10
44秒前
xuxingxing完成签到,获得积分10
46秒前
50秒前
52秒前
YangSihan发布了新的文献求助10
53秒前
单薄天宇应助爱笑若冰采纳,获得10
54秒前
可爱的函函应助YangSihan采纳,获得10
1分钟前
丘比特应助贪玩的一曲采纳,获得10
1分钟前
乐乐应助紧张的南风采纳,获得10
1分钟前
1分钟前
1分钟前
XCHI完成签到 ,获得积分10
1分钟前
科研通AI2S应助tuanheqi采纳,获得20
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
orixero应助科研通管家采纳,获得10
2分钟前
tutu完成签到,获得积分10
2分钟前
无情的琳完成签到,获得积分10
2分钟前
2分钟前
豌豆发布了新的文献求助10
2分钟前
无情的琳发布了新的文献求助10
3分钟前
QQ完成签到 ,获得积分10
3分钟前
Nefelibata完成签到,获得积分10
3分钟前
辛勤奇迹完成签到,获得积分10
3分钟前
Limerencia完成签到,获得积分10
3分钟前
4分钟前
4分钟前
桐桐应助科研通管家采纳,获得10
4分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244081
捐赠科研通 3045388
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800562
科研通“疑难数据库(出版商)”最低求助积分说明 759483