信号(编程语言)
实现(概率)
激活函数
光学
计算机科学
人工神经网络
信号处理
MNIST数据库
光通信中继器
光学晶体管
物理
光学性能监测
电子工程
电压
电信
人工智能
晶体管
波分复用
工程类
数学
统计
雷达
程序设计语言
量子力学
波长
作者
Monireh Moayedi Pour Fard,Ian A. D. Williamson,Matthew Edwards,Ke Liu,Sunil Pai,Ben Bartlett,Momchil Minkov,Tyler W. Hughes,Shanhui Fan,Thien-An Nguyen
出处
期刊:Optics Express
[The Optical Society]
日期:2020-04-01
卷期号:28 (8): 12138-12138
被引量:100
摘要
We experimentally demonstrate an on-chip electro-optic circuit for realizing arbitrary nonlinear activation functions for optical neural networks (ONNs). The circuit operates by converting a small portion of the input optical signal into an electrical signal and modulating the intensity of the remaining optical signal. Electrical signal processing allows the activation function circuit to realize any optical-to-optical nonlinearity that does not require amplification. Such line shapes are not constrained to those of conventional optical nonlinearities. Through numerical simulations, we demonstrate that the activation function improves the performance of an ONN on the MNIST image classification task. Moreover, the activation circuit allows for the realization of nonlinearities with far lower optical signal attenuation, paving the way for much deeper ONNs.
科研通智能强力驱动
Strongly Powered by AbleSci AI