亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Preoperative Assessment for High‐Risk Endometrial Cancer by Developing an MRI‐ and Clinical‐Based Radiomics Nomogram: A Multicenter Study

列线图 无线电技术 医学 子宫内膜癌 置信区间 逻辑回归 放射科 接收机工作特性 Lasso(编程语言) 淋巴结切除术 核医学 内科学 癌症 计算机科学 万维网
作者
Bi Cong Yan,Ying Li,Hua Feng,Feng Feng,Ming Sun,Guangwu Lin,Guofu Zhang,Jin Wei Qiang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:52 (6): 1872-1882 被引量:59
标识
DOI:10.1002/jmri.27289
摘要

Background High‐ and low‐risk endometrial cancer (EC) differ in whether lymphadenectomy is performed. Assessment of high‐risk EC is essential for planning surgery appropriately. Purpose To develop a radiomics nomogram for high‐risk EC prediction preoperatively. Study Type Retrospective. Population In all, 717 histopathologically confirmed EC patients (mean age, 56 years ± 9) divided into a primary group (394 patients from Center A), validation groups 1 and 2 (146 patients from Center B and 177 patients from Centers C–E). Field Strength/Sequence 1.5/ 3T scanners; T 2 ‐weighted imaging, diffusion‐weighted imaging, apparent diffusion coefficient, and contrast enhancement sequences. Assessment A radiomics nomogram was generated by combining the selected radiomics features and clinical parameters (metabolic syndrome, cancer antigen 125, age, tumor grade following curettage, and tumor size). The area under the curve (AUC) of the receiver operator characteristic was used to evaluate the predictive performance of the radiomics nomogram for high‐risk EC. The surgical procedure suggested by the nomogram was compared with the actual procedure performed for the patients. Net benefit of the radiomics nomogram was evaluated by a clinical decision curve (CDC), net reclassification index (NRI), and integrated discrimination improvement (IDI). Statistical Tests Binary least absolute shrinkage and selection operator (LASSO) logistic regression, linear regression, and multivariate binary logistic regression were used to select radiomics features and clinical parameters. Results The AUC for prediction of high‐risk EC for the radiomics nomogram in the primary group, validation groups 1 and 2 were 0.896 (95% confidence interval [CI]: 0.866–0.926), 0.877 (95% CI: 0.825–0.930), and 0.919 (95% CI: 0.879–0.960), respectively. The nomogram achieved good net benefit by CDC analysis for high‐risk EC. NRIs were 1.17, 1.28, and 1.51, and IDIs were 0.41, 0.60, and 0.61 in the primary group, validation groups 1 and 2, respectively. Data Conclusion The radiomics nomogram exhibited good performance in the individual prediction of high‐risk EC, and might be used for surgical management of EC. Level of Evidence 4 Technical Efficacy Stage 2 J. MAGN. RESON. IMAGING 2020;52:1872–1882.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bopbopbaby完成签到 ,获得积分10
2秒前
思源应助科研通管家采纳,获得10
12秒前
12秒前
直率的笑翠完成签到 ,获得积分10
1分钟前
longge233233完成签到,获得积分10
1分钟前
SCI的李完成签到 ,获得积分10
1分钟前
ffff完成签到 ,获得积分10
1分钟前
1分钟前
lalala发布了新的文献求助10
1分钟前
灵巧的语兰完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
ding应助HJJHJH采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
herococa完成签到,获得积分10
2分钟前
LRxxx完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
HJJHJH发布了新的文献求助10
3分钟前
Murphy完成签到 ,获得积分10
3分钟前
敏感剑鬼关注了科研通微信公众号
4分钟前
Ji完成签到,获得积分10
4分钟前
忐忑的黑猫应助麻瓜采纳,获得10
4分钟前
可可发布了新的文献求助10
4分钟前
麻瓜完成签到,获得积分10
4分钟前
jokerhoney完成签到,获得积分10
4分钟前
automan发布了新的文献求助10
4分钟前
5分钟前
笑笑发布了新的文献求助10
5分钟前
安静的瑾瑜完成签到 ,获得积分10
5分钟前
淡定的安柏完成签到,获得积分10
5分钟前
笑笑完成签到,获得积分10
5分钟前
月亮完成签到 ,获得积分10
6分钟前
FashionBoy应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
灵巧的语兰关注了科研通微信公众号
6分钟前
Li完成签到,获得积分10
6分钟前
rengar完成签到,获得积分10
6分钟前
稻子完成签到 ,获得积分10
6分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780810
求助须知:如何正确求助?哪些是违规求助? 3326334
关于积分的说明 10226562
捐赠科研通 3041495
什么是DOI,文献DOI怎么找? 1669449
邀请新用户注册赠送积分活动 799051
科研通“疑难数据库(出版商)”最低求助积分说明 758732