已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An RDAU-NET model for lesion segmentation in breast ultrasound images

深度学习 人工智能 计算机科学 分割 乳腺超声检查 人工神经网络 模式识别(心理学) 残余物 乳腺癌 Sørensen–骰子系数 医学 图像分割 癌症 乳腺摄影术 算法 内科学
作者
Zhemin Zhuang,Nan Li,Alex Noel Joseph Raj,Vijayalakshmi G. V. Mahesh,Shunmin Qiu
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:14 (8): e0221535-e0221535 被引量:171
标识
DOI:10.1371/journal.pone.0221535
摘要

Breast cancer is a common gynecological disease that poses a great threat to women health due to its high malignant rate. Breast cancer screening tests are used to find any warning signs or symptoms for early detection and currently, Ultrasound screening is the preferred method for breast cancer diagnosis. The localization and segmentation of the lesions in breast ultrasound (BUS) images are helpful for clinical diagnosis of the disease. In this paper, an RDAU-NET (Residual-Dilated-Attention-Gate-UNet) model is proposed and employed to segment the tumors in BUS images. The model is based on the conventional U-Net, but the plain neural units are replaced with residual units to enhance the edge information and overcome the network performance degradation problem associated with deep networks. To increase the receptive field and acquire more characteristic information, dilated convolutions were used to process the feature maps obtained from the encoder stages. The traditional cropping and copying between the encoder-decoder pipelines were replaced by the Attention Gate modules which enhanced the learning capabilities through suppression of background information. The model, when tested with BUS images with benign and malignant tumor presented excellent segmentation results as compared to other Deep Networks. A variety of quantitative indicators including Accuracy, Dice coefficient, AUC(Area-Under-Curve), Precision, Sensitivity, Specificity, Recall, F1score and M-IOU (Mean-Intersection-Over-Union) provided performances above 80%. The experimental results illustrate that the proposed RDAU-NET model can accurately segment breast lesions when compared to other deep learning models and thus has a good prospect for clinical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
1秒前
阿李完成签到 ,获得积分10
1秒前
1秒前
芒果完成签到 ,获得积分10
2秒前
2秒前
GamePlayer发布了新的文献求助10
2秒前
GamePlayer发布了新的文献求助10
2秒前
GamePlayer发布了新的文献求助10
2秒前
GamePlayer发布了新的文献求助10
2秒前
GamePlayer发布了新的文献求助10
2秒前
GamePlayer发布了新的文献求助10
2秒前
GamePlayer发布了新的文献求助10
2秒前
GamePlayer发布了新的文献求助10
3秒前
GamePlayer发布了新的文献求助10
3秒前
GamePlayer发布了新的文献求助10
3秒前
GamePlayer发布了新的文献求助10
3秒前
GamePlayer发布了新的文献求助10
3秒前
GamePlayer发布了新的文献求助10
3秒前
SCINEXUS完成签到,获得积分0
3秒前
GamePlayer发布了新的文献求助10
4秒前
GamePlayer发布了新的文献求助10
4秒前
GamePlayer发布了新的文献求助10
4秒前
GamePlayer发布了新的文献求助10
4秒前
GamePlayer发布了新的文献求助10
4秒前
GamePlayer发布了新的文献求助10
4秒前
GamePlayer发布了新的文献求助10
4秒前
GamePlayer发布了新的文献求助10
4秒前
GamePlayer发布了新的文献求助10
4秒前
GamePlayer发布了新的文献求助10
4秒前
GamePlayer发布了新的文献求助10
4秒前
GamePlayer发布了新的文献求助10
4秒前
GamePlayer发布了新的文献求助10
4秒前
GamePlayer发布了新的文献求助10
4秒前
GamePlayer发布了新的文献求助10
4秒前
GamePlayer发布了新的文献求助10
4秒前
GamePlayer发布了新的文献求助10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4552469
求助须知:如何正确求助?哪些是违规求助? 3981686
关于积分的说明 12327487
捐赠科研通 3651386
什么是DOI,文献DOI怎么找? 2011063
邀请新用户注册赠送积分活动 1046184
科研通“疑难数据库(出版商)”最低求助积分说明 934740