A comprehensive review on emerging artificial neuromorphic devices

神经形态工程学 计算机科学 可扩展性 计算机体系结构 人工智能 人工神经网络 数据库
作者
Jiadi Zhu,Teng Zhang,Yuchao Yang,Ru Huang
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:7 (1) 被引量:599
标识
DOI:10.1063/1.5118217
摘要

The rapid development of information technology has led to urgent requirements for high efficiency and ultralow power consumption. In the past few decades, neuromorphic computing has drawn extensive attention due to its promising capability in processing massive data with extremely low power consumption. Here, we offer a comprehensive review on emerging artificial neuromorphic devices and their applications. In light of the inner physical processes, we classify the devices into nine major categories and discuss their respective strengths and weaknesses. We will show that anion/cation migration-based memristive devices, phase change, and spintronic synapses have been quite mature and possess excellent stability as a memory device, yet they still suffer from challenges in weight updating linearity and symmetry. Meanwhile, the recently developed electrolyte-gated synaptic transistors have demonstrated outstanding energy efficiency, linearity, and symmetry, but their stability and scalability still need to be optimized. Other emerging synaptic structures, such as ferroelectric, metal–insulator transition based, photonic, and purely electronic devices also have limitations in some aspects, therefore leading to the need for further developing high-performance synaptic devices. Additional efforts are also demanded to enhance the functionality of artificial neurons while maintaining a relatively low cost in area and power, and it will be of significance to explore the intrinsic neuronal stochasticity in computing and optimize their driving capability, etc. Finally, by looking into the correlations between the operation mechanisms, material systems, device structures, and performance, we provide clues to future material selections, device designs, and integrations for artificial synapses and neurons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
海潮发布了新的文献求助10
2秒前
zengzeng完成签到,获得积分10
2秒前
wanci应助Kane采纳,获得10
3秒前
乐乐应助呐呐呐采纳,获得10
4秒前
自自自在发布了新的文献求助10
5秒前
李健的粉丝团团长应助LBB采纳,获得10
5秒前
liusui发布了新的文献求助10
6秒前
写个锤子完成签到,获得积分10
6秒前
大模型应助dfggg采纳,获得10
6秒前
科研通AI5应助小高采纳,获得10
7秒前
共享精神应助科研如喝水采纳,获得10
7秒前
8秒前
俄而完成签到 ,获得积分10
8秒前
lvvyy完成签到,获得积分10
8秒前
领导范儿应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
Ava应助练习者采纳,获得10
10秒前
11秒前
打打应助迅速冰岚采纳,获得30
12秒前
202483067完成签到 ,获得积分10
12秒前
13秒前
13秒前
小刺猬完成签到,获得积分10
13秒前
喜马拉雅川完成签到,获得积分10
13秒前
传奇3应助米里迷路采纳,获得10
13秒前
科研通AI5应助liusui采纳,获得30
13秒前
zxc完成签到,获得积分10
13秒前
传奇3应助HJJHJH采纳,获得10
13秒前
Kane发布了新的文献求助10
14秒前
15秒前
Akim应助dsdjsicj采纳,获得10
15秒前
15秒前
所所应助自由的石头采纳,获得30
15秒前
yyhgyg完成签到,获得积分10
16秒前
16秒前
独特的清发布了新的文献求助20
17秒前
Dolphin123发布了新的文献求助10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786934
求助须知:如何正确求助?哪些是违规求助? 3332593
关于积分的说明 10256397
捐赠科研通 3047840
什么是DOI,文献DOI怎么找? 1672734
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760271