霍普夫分叉
中央歧管
数学
非线性系统
理论(学习稳定性)
分叉
鞍结分岔
流行病模型
应用数学
人口
跨临界分岔
逻辑函数
倍周期分岔
入射(几何)
控制理论(社会学)
分叉理论的生物学应用
数学分析
物理
计算机科学
统计
几何学
人口学
量子力学
控制(管理)
人工智能
社会学
机器学习
作者
Anthony M. Pasion,Juancho A. Collera
出处
期刊:Nucleation and Atmospheric Aerosols
日期:2019-01-01
卷期号:2184: 060013-060013
摘要
In this paper, we formulate and study a time-delayed SIS epidemic model with latency and nonlinear incidence rate, where the susceptible host population satisfies the logistic equation and the incidence rate is of saturated form with the susceptible. By regarding the time lag as bifurcation parameter, the local stability of the endemic equilibrium is investigated and sufficient conditions on the occurrence of stability switches through Hopf bifurcations are obtained. Further, the direction of Hopf bifurcation and the stability of bifurcating periodic solutions are determined by using the center manifold reduction and the normal form method. Numerical simulations are carried out to illustrate theoretical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI