Automatic Monitoring of Chicken Movement and Drinking Time Using Convolutional Neural Networks

卷积神经网络 热应力 运动(音乐) 人工智能 帧速率 跟踪(教育) 帧(网络) 计算机科学 计算机视觉 模式识别(心理学) 动物科学 生物 电信 美学 哲学 教育学 心理学
作者
Chen-Yi Lin,Kuangwen Hsieh,Yao-Chuan Tsai,Yan‐Fu Kuo
出处
期刊:Transactions of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:63 (6): 2029-2038 被引量:18
标识
DOI:10.13031/trans.13607
摘要

Highlights A customized embedded system was built to acquire images of a chicken coop. Faster R-CNN was used to localize the chickens in the images. The accuracies in chicken detection and tracking were 98.16% and 98.94%, respectively. Movement and drinking time of chickens were quantified. Abstract . Poultry and eggs are major sources of dietary protein worldwide. Because Taiwan is located in tropical and subtropical regions, heat stress in chickens is one of the most challenging concerns of the poultry industry in Taiwan. Typical heat stress symptoms in chickens are reduced movement and increased drinking time. The level of heat stress is conventionally evaluated using the temperature-humidity index (THI) or through manual observation. However, THI is indirect, and manual observation is subjective and time-consuming. This study proposes to directly monitor the movement and drinking time of chickens using time-lapse images and deep learning algorithms. In this study, an experimental coop was constructed to house ten chickens. An embedded system was then designed to acquire images of the chickens at a rate of 1 frame s-1 and to measure the temperature and humidity of the coop. A faster region-based convolutional neural network was then trained on a personal computer to detect and localize the chickens in the images. The movement and drinking time of the chickens under various THI values were then analyzed. The proposed method provided 98.16% chicken detection accuracy and 98.94% chicken tracking accuracy. Keywords: Chicken activities, Embedded system, Faster region-based convolutional neural network, Faster R-CNN, Heat stress, Temperature-humidity index (THI).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
颜靖仇发布了新的文献求助10
1秒前
1秒前
Zosty发布了新的文献求助10
1秒前
Tik完成签到,获得积分10
2秒前
Lillian发布了新的文献求助10
2秒前
曾经冰露发布了新的文献求助10
4秒前
超级灵竹完成签到,获得积分20
4秒前
CCC完成签到,获得积分10
5秒前
平凡之路发布了新的文献求助10
6秒前
香蕉秋寒完成签到,获得积分10
7秒前
7秒前
9秒前
9秒前
9秒前
完美世界应助kk采纳,获得10
10秒前
1216发布了新的文献求助10
11秒前
Owen应助lllllllll采纳,获得10
12秒前
葛蓉发布了新的文献求助10
13秒前
香蕉觅云应助喜悦的妙之采纳,获得10
13秒前
13秒前
Zwh发布了新的文献求助10
13秒前
tommyhechina发布了新的文献求助30
13秒前
14秒前
高文强完成签到,获得积分10
14秒前
14秒前
16秒前
16秒前
qqq发布了新的文献求助10
16秒前
17秒前
17秒前
佳佳佳佳上好佳完成签到,获得积分10
18秒前
ya完成签到 ,获得积分20
18秒前
七月流火应助搞科研采纳,获得50
19秒前
LIN_PY发布了新的文献求助10
20秒前
20秒前
Maestro_S发布了新的文献求助10
20秒前
bobo0212发布了新的文献求助10
20秒前
慕青应助郝薇薇薇薇儿采纳,获得10
21秒前
21秒前
Southluuu发布了新的文献求助10
21秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4063511
求助须知:如何正确求助?哪些是违规求助? 3601947
关于积分的说明 11439559
捐赠科研通 3325083
什么是DOI,文献DOI怎么找? 1827945
邀请新用户注册赠送积分活动 898430
科研通“疑难数据库(出版商)”最低求助积分说明 819042