细胞毒性T细胞
卵巢癌
癌症研究
免疫疗法
癌症免疫疗法
生物
基质
转录组
T细胞
细胞
免疫系统
肿瘤微环境
癌症
免疫学
免疫组织化学
体外
基因表达
生物化学
遗传学
基因
作者
Mélanie Desbois,Akshata R. Udyavar,Lisa Ryner,Cleopatra Kozlowski,Yinghui Guan,Milena Dürrbaum,Shan Lu,Jean‐Philippe Fortin,Hartmut Koeppen,James Ziai,Ching‐Wei Chang,Shilpa Keerthivasan,Marie Plante,Richard Bourgon,Carlos Bais,Priti S. Hegde,Anneleen Daemen,Shannon J. Turley,Yulei Wang
标识
DOI:10.1038/s41467-020-19408-2
摘要
Abstract Close proximity between cytotoxic T lymphocytes and tumour cells is required for effective immunotherapy. However, what controls the spatial distribution of T cells in the tumour microenvironment is not well understood. Here we couple digital pathology and transcriptome analysis on a large ovarian tumour cohort and develop a machine learning approach to molecularly classify and characterize tumour-immune phenotypes. Our study identifies two important hallmarks characterizing T cell excluded tumours: 1) loss of antigen presentation on tumour cells and 2) upregulation of TGFβ and activated stroma. Furthermore, we identify TGFβ as an important mediator of T cell exclusion. TGFβ reduces MHC-I expression in ovarian cancer cells in vitro. TGFβ also activates fibroblasts and induces extracellular matrix production as a potential physical barrier to hinder T cell infiltration. Our findings indicate that targeting TGFβ might be a promising strategy to overcome T cell exclusion and improve clinical benefits of cancer immunotherapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI