Thermal Stability Enhancement through Structure Modification on the Microsized Crystalline Grain Surface of Lithium-Rich Layered Oxides

材料科学 尖晶石 热稳定性 结块 化学工程 粒度 差示扫描量热法 锂(药物) 比表面积 纳米技术 复合材料 冶金 热力学 内分泌学 工程类 物理 医学 生物化学 化学 催化作用
作者
Yinzhong Wang,Lin Wang,Xianwei Guo,Tianhao Wu,Yubo Yang,Boya Wang,Errui Wang,Haijun Yu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:12 (7): 8306-8315 被引量:59
标识
DOI:10.1021/acsami.9b21303
摘要

Lithium-rich layered oxides have been considered as the most promising candidate for offering a high specific capacity and energy density for lithium-ion batteries. However, their practical applications are still suffered by the cycle instability and also closely related thermal stability. Here, microsized crystalline grains with good dispersion of lithium-rich layered oxides are prepared by a molten-salt method, while a spinel structure is also introduced on a grain surface by following chemical oxidation and annealing process, and their thermal performance with different cutoff voltages during the charge process is systematically studied using differential scanning calorimetry method. Results have shown that thermal stability of microsized crystalline grains is better than that of spherical secondary agglomerates, the spinel structure introduction on the grain surface of microsized crystalline grains can contribute obviously to their thermal stability, in which the onset temperature of the exothermic peak has been increased by 103 °C, and the thermal release value can be reduced as much as about 40% when the battery was charged to 4.8 V. Furthermore, the electrochemical performance, especially cycle stability under a high temperature, has also been enhanced for spinel-modified microsized crystalline grains. This work not only develops the microsized crystalline grains with good dispersion of lithium-rich layered oxides, confirming the advantages of these materials compared to spherical secondary agglomerates, but also reveals the method to improve their thermal stability by grain surface structure modification, opening the way to optimize the comprehensive performance of electrode materials for batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
9秒前
情怀应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
9秒前
猪猪hero应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
9秒前
Lucas应助酷炫灵安采纳,获得10
12秒前
谦让寒云完成签到 ,获得积分10
13秒前
大喵发布了新的文献求助10
14秒前
木子发布了新的文献求助10
14秒前
15秒前
不想干活完成签到,获得积分0
16秒前
17秒前
犹豫的雯发布了新的文献求助10
18秒前
司马绮山完成签到,获得积分10
20秒前
暂无发布了新的文献求助10
21秒前
22秒前
HH完成签到 ,获得积分10
23秒前
酷炫灵安发布了新的文献求助10
23秒前
24秒前
科研通AI5应助晓生采纳,获得10
25秒前
25秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 666
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4254916
求助须知:如何正确求助?哪些是违规求助? 3787671
关于积分的说明 11887467
捐赠科研通 3437888
什么是DOI,文献DOI怎么找? 1886732
邀请新用户注册赠送积分活动 937832
科研通“疑难数据库(出版商)”最低求助积分说明 843565