Understanding How Fc-Modification Transforms a Pathogenic Heparin-Induced Thrombocytopenia (HIT)-like Monoclonal Antibody into a Novel Treatment for Sepsis

中性粒细胞胞外陷阱 败血症 血小板因子4 组蛋白 溶解 单克隆抗体 微生物学 肝素 细菌 金黄色葡萄球菌 化学 DNA 免疫学 生物 抗体 炎症 生物化学 遗传学
作者
Kandace Gollomp,Amrita Sarkar,Gowthami M. Arepally,Douglas B. Cines,M. Anna Kowalska,Lubica Rauova,Mortimer Poncz
出处
期刊:Blood [American Society of Hematology]
卷期号:134 (Supplement_1): 10-10
标识
DOI:10.1182/blood-2019-123132
摘要

Sepsis is a dysregulated response to infection that leads to life-threatening organ damage. This process induces the release of neutrophil extracellular traps (NETs), webs of negatively-charged cell-free DNA (cfDNA) complexed with positively-charged histones that capture pathogens but also damage host tissue. We believe that upon presentation, most patients with sepsis have already released a large amount of NETs so that preventing NET release (NETosis), or accelerating their lysis with DNase, may be ineffective or harmful. Murine studies of NET lysis in sepsis have met with mixed results raising the concern that this strategy may lead to the release of captured bacteria and harmful NET degradation products (NDPs) such as cell free (cf) DNA and histones. We propose NET stabilization as an alternative therapy in sepsis. In a microfluidic system, we have shown that NETs bound the platelet chemokine platelet factor 4 (PF4, CXCL4), a highly-positively charged protein that aggregates polyanionic molecules including DNA. As a result of this aggregating effect, PF4 physically compacts NETs without inducing histone release. These compact PF4-NET complexes are resistant to DNase lysis. Using a microfluidic system, in which channels coated with NETs were infused with labeled Staphylococcus aureus particles, we now show that PF4 compaction of NETs markedly enhances their ability to capture bacteria. Likely, PF4, which is known to bind to the bacterial cell wall, cross aggregates pathogens to NET DNA. Thus, without added PF4, little bacteria is entrapped in the microfluidic chamber (Fig. 1A & 1B) and those captured are readily released by the infusion of DNase I (Fig. 1C & 1D). In contrast, when PF4 is added, microbial entrapment is markedly enhanced (Fig. 1A & 1B) and persists even with the infusion of DNase (Fig. 1C & 1D). When human (h) PF4 binds to polyanions it changes conformation, revealing HIT antigenic sites that bind the HIT-like monoclonal antibody KKO. Bound KKO further enhances PF4-NET complex resistance to DNase I in the microfluidic chamber, preventing the release of NDPs and entrapped bacteria upon exposure to DNases. These in vitro observations led us to hypothesize that infused PF4 and/or KKO may serve as a targeted therapeutic in sepsis. However, unmodified KKO stimulates leukocytes and induces a prothrombotic state. Indeed, infused KKO accelerates mortality in murine models of sepsis in mice that express hPF4 (hPF4+) (Fig. 2C). We, therefore, modified KKO using an IgG-specific endoglycosidase to create deglycosylated KKO (DG-KKO) that retains the ability to bind to PF4-NET complexes, but has little capacity to interact with hematopoietic cell Fc receptors or activate complement. DG-KKO binding also protects hPF4-NET complexes from DNase lysis and does not interfere with bacterial capture (Fig. 1B). In a murine lipopolysaccharide (LPS) endotoxemia model, DG-KKO infusion prevented thrombocytopenia, decreased the release of NDPs, and enhanced survival exclusively in hPF4+ mice (not shown). Although treatment with LPS recapitulates many aspects of sepsis, it relies on treatment with a bacterial toxin rather than live pathogens. Therefore, to determine if hPF4 and/or DG-KKO mitigate bacterial-induced sepsis, we repeated our studies using cecal ligation and puncture (CLP) to induce polymicrobial sepsis. Infused hPF4, but more so, infused DG-KKO decreased the severity of thrombocytopenia, reduced NDP release, and improved survival (Fig. 2A-2C). These murine studies demonstrate that PF4 released from activated platelets stabilizes NETs, making them resistant to DNase lysis and enhancing their ability to capture bacteria. Infused PF4 and DG-KKO further enhance NET stability, decrease the release of NDPs, and enhance bacterial entrapment, leading to better outcomes. These studies provide mechanistic insights into how NETs contribute to end-organ damage in sepsis and offer a targeted and novel therapeutic that minimizes their harmful effects, while enhancing their protective properties. Disclosures Arepally: Biokit: Patents & Royalties; Apotex Pharmaceuticals: Consultancy; Veralox Therapeutics: Membership on an entity's Board of Directors or advisory committees.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张阳阳完成签到,获得积分10
2秒前
2秒前
Money完成签到 ,获得积分10
3秒前
5秒前
5秒前
Eve发布了新的文献求助10
6秒前
充电宝应助轩辕寄风采纳,获得10
7秒前
阿伟发布了新的文献求助10
7秒前
毛肚吃不腻完成签到 ,获得积分10
7秒前
852应助刘海鸥采纳,获得10
9秒前
咻咻发布了新的文献求助30
10秒前
Ceceliayyy完成签到 ,获得积分10
10秒前
NexusExplorer应助boyue采纳,获得10
11秒前
刘老哥6发布了新的文献求助10
11秒前
科里斯皮尔应助Lvk采纳,获得10
11秒前
第81颗小行星完成签到,获得积分10
12秒前
阿伟完成签到,获得积分10
13秒前
李国威发布了新的文献求助10
13秒前
13秒前
熊猫完成签到,获得积分10
15秒前
张同学完成签到,获得积分10
15秒前
16秒前
luoxu完成签到,获得积分10
17秒前
17秒前
爆米花应助Eve采纳,获得10
18秒前
轩辕寄风发布了新的文献求助10
20秒前
大怪兽芙珑完成签到,获得积分10
22秒前
简单依风发布了新的文献求助10
23秒前
yinlao完成签到,获得积分10
23秒前
shinysparrow应助dwj采纳,获得10
23秒前
如意的向日葵完成签到,获得积分10
24秒前
木头人完成签到,获得积分10
25秒前
兰塔完成签到,获得积分10
27秒前
咻咻完成签到,获得积分10
28秒前
hfgeyt完成签到,获得积分10
28秒前
昆仑山吴某完成签到 ,获得积分10
28秒前
Eve完成签到,获得积分10
28秒前
听筒23完成签到 ,获得积分10
29秒前
Admin完成签到,获得积分10
30秒前
自觉平露完成签到,获得积分10
30秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 800
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
Chinese-English Translation Lexicon Version 3.0 500
Wisdom, Gods and Literature Studies in Assyriology in Honour of W. G. Lambert 400
薩提亞模式團體方案對青年情侶輔導效果之研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2391898
求助须知:如何正确求助?哪些是违规求助? 2096649
关于积分的说明 5281972
捐赠科研通 1824218
什么是DOI,文献DOI怎么找? 909793
版权声明 559864
科研通“疑难数据库(出版商)”最低求助积分说明 486146