A Survey on Deep Learning Techniques for Stereo-Based Depth Estimation

人工智能 计算机科学 深度学习 计算机图形学 估计 增强现实 计算机视觉 匹配(统计) 领域(数学) RGB颜色模型 机器学习 立体视觉 立体摄像机 数学 纯数学 管理 经济 统计
作者
Hamid Laga,Laurent Valentin Jospin,Farid Boussaid,Mohammed Bennamoun
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:44 (4): 1738-1764 被引量:75
标识
DOI:10.1109/tpami.2020.3032602
摘要

Estimating depth from RGB images is a long-standing ill-posed problem, which has been explored for decades by the computer vision, graphics, and machine learning communities. Among the existing techniques, stereo matching remains one of the most widely used in the literature due to its strong connection to the human binocular system. Traditionally, stereo-based depth estimation has been addressed through matching hand-crafted features across multiple images. Despite the extensive amount of research, these traditional techniques still suffer in the presence of highly textured areas, large uniform regions, and occlusions. Motivated by their growing success in solving various 2D and 3D vision problems, deep learning for stereo-based depth estimation has attracted a growing interest from the community, with more than 150 papers published in this area between 2014 and 2019. This new generation of methods has demonstrated a significant leap in performance, enabling applications such as autonomous driving and augmented reality. In this paper, we provide a comprehensive survey of this new and continuously growing field of research, summarize the most commonly used pipelines, and discuss their benefits and limitations. In retrospect of what has been achieved so far, we also conjecture what the future may hold for deep learning-based stereo for depth estimation research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guo完成签到 ,获得积分10
1秒前
ZSXL发布了新的文献求助10
5秒前
one发布了新的文献求助10
6秒前
叶九幽完成签到,获得积分10
7秒前
Skuld应助ohh采纳,获得30
9秒前
9秒前
11秒前
cis2014发布了新的文献求助10
13秒前
黄金蛋饺完成签到,获得积分10
13秒前
王单阳完成签到,获得积分10
14秒前
知了发布了新的文献求助10
15秒前
geyahe发布了新的文献求助10
15秒前
he发布了新的文献求助10
16秒前
洪东智完成签到,获得积分10
21秒前
12发布了新的文献求助10
22秒前
科研通AI5应助Prime采纳,获得10
22秒前
zhou完成签到,获得积分10
25秒前
26秒前
优秀送终完成签到,获得积分10
26秒前
28秒前
bkagyin应助科研通管家采纳,获得10
28秒前
ZhouYW应助科研通管家采纳,获得10
28秒前
搜集达人应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
所所应助科研通管家采纳,获得10
28秒前
大个应助科研通管家采纳,获得30
28秒前
元锦程发布了新的文献求助10
28秒前
daisy应助科研通管家采纳,获得10
28秒前
酷波er应助科研通管家采纳,获得10
28秒前
Hello应助科研通管家采纳,获得10
28秒前
深情安青应助科研通管家采纳,获得10
28秒前
调皮黑猫应助科研通管家采纳,获得20
28秒前
daisy应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
30秒前
Lampe完成签到,获得积分10
30秒前
优秀送终发布了新的文献求助20
30秒前
chen发布了新的文献求助10
31秒前
佟远山完成签到,获得积分10
32秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798061
求助须知:如何正确求助?哪些是违规求助? 3343561
关于积分的说明 10316564
捐赠科研通 3060257
什么是DOI,文献DOI怎么找? 1679407
邀请新用户注册赠送积分活动 806560
科研通“疑难数据库(出版商)”最低求助积分说明 763244