辐照
材料科学
氦
位错
离子
马氏体
微观结构
辐射损伤
中子
透射电子显微镜
分析化学(期刊)
放射化学
复合材料
原子物理学
核物理学
纳米技术
化学
物理
有机化学
色谱法
作者
Zhen Yang,Junyuan Yang,Qing Liao,Shuai Xu,Bingsheng Li
出处
期刊:Chinese Physics B
[IOP Publishing]
日期:2020-12-28
卷期号:30 (5): 056107-056107
被引量:2
标识
DOI:10.1088/1674-1056/abd6f9
摘要
SIMP steel is newly developed fully martensitic steel for lead-cooled fast reactors and accelerator-driven systems. It is important to evaluate its radiation resistance via high flux neutron irradiation, where dense He atoms can be formed via (n, α ) transmutation reaction. Co-irradiation with Fe and He ions, instead of neutron, was performed. Specimens were irradiated with 6.4-MeV Fe ions to the damage dose of 5 dpa at a depth of 600 nm. Three different helium injection ratios of 60-appm He/dpa (dpa: displacements per atom), 200-appm He/dpa and 600-appm He/dpa at a depth of 600 nm, were performed. Two different irradiation temperatures of 300 °C and 450 °C were carried out. The effect of helium concentration on the microstructure of Fe-irradiated SIMP steel was investigated. Microstructural damage was observed using transmission electron microscopy. The formed dislocation loops and bubbles depended on the helium injection ratio and irradiation temperature. Lots of dislocation loops and helium bubbles were homogeneously distributed at 300 °C, but not at 450 °C. The causes of observed effects are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI