牙髓干细胞
多效蛋白
牙本质形成
成牙本质细胞
细胞生物学
下调和上调
干细胞
化学
生物
牙髓(牙)
基因
生长因子
病理
医学
生物化学
受体
作者
Luyuan Jin,Feifei Gao,Lili Zhang,Chao Wang,Lei Hu,Zhipeng Fan,Dengsheng Xia
标识
DOI:10.1080/03008207.2020.1779238
摘要
Purpose: Pleiotrophin (PTN) is a heparin-binding growth-associated molecule and expressed in ameloblasts and odontoblasts throughout tooth maturation. Our previous study has shown that PTN expressed more than 20-fold higher in dental tissue than dental stem cells. However, the role of PTN on proliferation and osteo/dentinogenesis of dental pulp stem cells (DPSCs) is unclear. The purpose of the present study was to investigate the role of PTN on the DPSCs' function.Methods: DPSCs were isolated from human third molars. Short hairpin RNAs (shRNAs) was used to knock down the PTN expression in DPSCs. Real-time RT-PCR, alizarin red staining, quantitative calcium analysis, in vivo transplantation and cell counting kit-8 (CCK8) assay were used to study the function of DPSCs. Possible mechanism was studied by RNA sequencing.Results: After PTN depletion, ALP activity and mineralization ability of DPSCs decreased. Expression of DMP-1 and BSP weakened. Proliferation of DPSCs at 48 h and 72 h was inhibited. Furthermore, 50 pg/mL PTN recombinant protein rescued the impaired osteo/dentinogenic differentiation potential and proliferation ability caused by PTN depletion. In addition, RNA sequencing showed 221 genes were downregulated and 233 genes upregulated in PTN depleted DPSCs. Several genes including BMP2 and IGFBP5 might be associated with PTN function on the DPSCs. P53 and the AMPK signaling pathways were involved. LncRNA analysis displayed 47 significantly upregulated lncRNA and 31 downregulated lncRNA comparing PTN depleted DPSCs with the control.Conclusion: Our research demonstrated that PTN has a positive role in maintaining DPSCs proliferation and osteo/dentinogenic differentiation potential.
科研通智能强力驱动
Strongly Powered by AbleSci AI