Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019)

聚类分析 空气污染 层次聚类 计算机科学 数据挖掘 环境科学 机器学习 有机化学 化学
作者
Prinolan Govender,Venkataraman Sivakumar
出处
期刊:Atmospheric Pollution Research [Elsevier BV]
卷期号:11 (1): 40-56 被引量:250
标识
DOI:10.1016/j.apr.2019.09.009
摘要

Clustering is an explorative data analysis technique used for investigating the underlying structure in the data. It described as the grouping of objects, where the objects share similar characteristics. Over the past 50 years, clustering has been widely applied to atmospheric science data in particular, climate and meteorological data. Since the 1980's, air pollution studies began employing clustering techniques, and has since been successful, and the aim of this paper is to provide a review of such studies. In particular, two well known and commonly used clustering methods i.e. k-means and hierarchical agglomerative, that have been applied in air pollution studies have been reviewed. Air pollution data from two sources i.e. ground-based monitoring stations and air mass trajectories depicting pollutant pathways, have been included. Research works that have focused on spatio-temporal characteristics of air pollutants, pollutant behavior in terms of source, transport pathways, apportionment and links to meteorological conditions, comprise much of the research works reviewed. A total of 100 research articles were included during the period of 1980–2019. The purpose of the clustering approach, the specific technique used and the data to which it was applied constitute much of the discussion presented in this review. Overall, the k-means technique has been extensively used among the studies, while average and Ward linkages were the most frequently applied hierarchical clustering techniques. Reviews of clustering techniques applied in air pollution studies are currently lacking and this paper aims to fill that gap. In addition, and to the best of the authors' knowledge, this is the first review dedicated to clustering applications in air pollution studies, and the first that covers the longest time span (1980–2019).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助默默的书蕾采纳,获得10
刚刚
温纲完成签到,获得积分10
刚刚
月光入梦完成签到 ,获得积分10
刚刚
刚刚
顺心纸鹤完成签到,获得积分10
1秒前
卡琳完成签到,获得积分10
1秒前
1秒前
月亮门完成签到 ,获得积分10
2秒前
科研通AI5应助Silence采纳,获得10
3秒前
mmddlj发布了新的文献求助10
3秒前
小田发布了新的文献求助10
3秒前
冷傲半邪完成签到,获得积分10
3秒前
陈陈发布了新的文献求助10
3秒前
3秒前
111111完成签到,获得积分10
4秒前
洁净山灵完成签到,获得积分10
4秒前
郁金香完成签到,获得积分10
5秒前
李健的小迷弟应助颜超采纳,获得10
5秒前
5秒前
陶醉平松发布了新的文献求助10
5秒前
可爱的函函应助沉梦志昂采纳,获得30
6秒前
6秒前
mmz完成签到 ,获得积分10
6秒前
7秒前
huhu完成签到,获得积分10
7秒前
上官若男应助cc采纳,获得10
7秒前
7秒前
7秒前
范大大完成签到,获得积分10
8秒前
洁净山灵发布了新的文献求助10
8秒前
9秒前
dldlwzdl完成签到,获得积分20
9秒前
热心的皮发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
bkagyin应助猛犸象冲冲冲采纳,获得10
12秒前
小胖发布了新的文献求助30
12秒前
科目三应助wxy采纳,获得30
12秒前
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804835
求助须知:如何正确求助?哪些是违规求助? 3349925
关于积分的说明 10346344
捐赠科研通 3065759
什么是DOI,文献DOI怎么找? 1683265
邀请新用户注册赠送积分活动 808800
科研通“疑难数据库(出版商)”最低求助积分说明 764915