金库(建筑)
均方误差
数学
均方预测误差
平均绝对误差
有晶状体人工晶状体
协议限制
平均差
镜头(地质)
线性回归
医学
生物识别
统计
眼科
核医学
光学
计算机科学
物理
视力
人工智能
折射误差
结构工程
置信区间
工程类
标识
DOI:10.3928/1081597x-20230207-03
摘要
Purpose: To establish and validate the accuracy of implantable collamer lens (ICL) vault size prediction formula based on preoperative biometric factors and lens parameters. Methods: This study included 300 patients (300 eyes) with Visian ICL V4c (STAAR Surgical) implantation. They were randomly divided into the formula establishment group and formula validation group. Anterior segment measurements, ICL V4c size and power, and vault 1 week postoperatively were collected from all patients. Multiple linear regression analysis was performed to establish the prediction formula. Mean absolute error (MAE), median absolute error (MedAE), root mean square error (RMSE), and Bland-Altman diagrams were used to evaluate the prediction formula. Results: Anterior chamber depth (ACD) had the greatest influence on vault 1 week after ICL V4c implantation, followed by ICL V4c size and angle-to-angle distance (ATA). The prediction formula was obtained according to the partial regression coefficient, which was vault (mm) = −1.279 + 0.291 × ACD (mm) + 0.210 × ICL V4c size (mm) – 0.144 × ATA (mm) ( R 2 = 0.661). In the formula validation group, the mean predictive vault, MAE, MedAE, and RMSE were 628.10, 135.09, 130.42, and 150.46 µm, respectively. The Bland-Altman diagram showed the predictive vault was in good agreement with the actual vault. Conclusions: A novel ICL V4c vault prediction formula was developed and shown to be an effective method for predicting the vault to reduce surgical complications. [ J Refract Surg . 2023;39(5):332–339.]
科研通智能强力驱动
Strongly Powered by AbleSci AI