Diffusion models in medical imaging: A comprehensive survey

计算机科学 人工智能 扩散图 概率逻辑 噪音(视频) 降噪 机器学习 扩散 医学影像学 数据科学 图像(数学) 非线性降维 降维 热力学 物理
作者
Amirhossein Kazerouni,Ehsan Khodapanah Aghdam,Moein Heidari,Reza Azad,Mohsen Fayyaz,Ilker Hacihaliloglu,Dorit Merhof
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:88: 102846-102846 被引量:242
标识
DOI:10.1016/j.media.2023.102846
摘要

Denoising diffusion models, a class of generative models, have garnered immense interest lately in various deep-learning problems. A diffusion probabilistic model defines a forward diffusion stage where the input data is gradually perturbed over several steps by adding Gaussian noise and then learns to reverse the diffusion process to retrieve the desired noise-free data from noisy data samples. Diffusion models are widely appreciated for their strong mode coverage and quality of the generated samples in spite of their known computational burdens. Capitalizing on the advances in computer vision, the field of medical imaging has also observed a growing interest in diffusion models. With the aim of helping the researcher navigate this profusion, this survey intends to provide a comprehensive overview of diffusion models in the discipline of medical imaging. Specifically, we start with an introduction to the solid theoretical foundation and fundamental concepts behind diffusion models and the three generic diffusion modeling frameworks, namely, diffusion probabilistic models, noise-conditioned score networks, and stochastic differential equations. Then, we provide a systematic taxonomy of diffusion models in the medical domain and propose a multi-perspective categorization based on their application, imaging modality, organ of interest, and algorithms. To this end, we cover extensive applications of diffusion models in the medical domain, including image-to-image translation, reconstruction, registration, classification, segmentation, denoising, 2/3D generation, anomaly detection, and other medically-related challenges. Furthermore, we emphasize the practical use case of some selected approaches, and then we discuss the limitations of the diffusion models in the medical domain and propose several directions to fulfill the demands of this field. Finally, we gather the overviewed studies with their available open-source implementations at our GitHub.1 We aim to update the relevant latest papers within it regularly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
雨堂完成签到 ,获得积分10
6秒前
qiushui发布了新的文献求助10
7秒前
儒雅曼岚发布了新的文献求助10
7秒前
wwwwrrrrr完成签到,获得积分10
8秒前
Malmever发布了新的文献求助10
9秒前
漂亮幻莲发布了新的文献求助10
13秒前
qiushui完成签到,获得积分10
13秒前
Owen应助胡庆余堂小洋参采纳,获得10
17秒前
20秒前
科研通AI5应助Malmever采纳,获得10
22秒前
lmy完成签到,获得积分10
22秒前
听海完成签到 ,获得积分10
26秒前
落寞依珊发布了新的文献求助10
27秒前
star完成签到,获得积分10
30秒前
xie关注了科研通微信公众号
30秒前
bernoulli完成签到,获得积分10
32秒前
32秒前
爱科研的小虞完成签到 ,获得积分10
33秒前
zhukun完成签到,获得积分10
34秒前
可爱的函函应助ZZC采纳,获得10
35秒前
36秒前
36秒前
38秒前
Dellamoffy完成签到,获得积分10
38秒前
青山完成签到 ,获得积分10
40秒前
chonger完成签到,获得积分10
40秒前
斯文败类应助糖果乖乖采纳,获得10
42秒前
青云完成签到,获得积分10
42秒前
bernoulli发布了新的文献求助10
42秒前
贤惠的小夏完成签到,获得积分10
42秒前
43秒前
分子筛发布了新的文献求助10
44秒前
科研通AI5应助Li采纳,获得10
44秒前
45秒前
庞_完成签到 ,获得积分10
46秒前
ren发布了新的文献求助10
47秒前
落寞依珊完成签到,获得积分10
48秒前
energyharvester完成签到 ,获得积分10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780426
求助须知:如何正确求助?哪些是违规求助? 3325838
关于积分的说明 10224370
捐赠科研通 3040879
什么是DOI,文献DOI怎么找? 1669111
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649