生物
非生物胁迫
基因家族
苜蓿
基因
非生物成分
遗传学
异源表达
基因组
植物
重组DNA
古生物学
作者
Weileng Guo,Dian Bao Yu,Runqiang Zhang,Weidi Zhao,Lishuang Zhang,Dan Wang,Yugang Sun,Changhong Guo
标识
DOI:10.1016/j.plaphy.2023.107787
摘要
Myo-inositol oxygenase (MIOX), a pivotal enzyme in the myo-inositol oxygenation pathway, catalyzes the cleavage of myo-inositol to UDP-glucuronic acid and plays a major role in plant adaptation to abiotic stress factors. However, studies pertaining to the MIOX gene family in alfalfa (Medicago sativa L.) are lacking. Therefore, this study characterized ten MsMIOX genes in the alfalfa genome. These genes were divisible into two classes distributed over three chromosomes and produced 12 pairs of fragment repeats and one pair of tandem repeats. Physicochemical properties, subcellular location, protein structure, conserved motifs, and gene structure pertinent to these MsMIOX genes were analyzed. Construction of a phylogenetic tree revealed that similar gene structures and conserved motifs were present in the same MsMIOX groups. Analysis of cis-acting elements revealed the presence of stress- and hormone-induced expression elements in the promoter regions of the MsMIOX genes. qRT-PCR analysis revealed that MsMIOX genes could be induced by various abiotic stress factors, such as salt, saline-alkali, drought, and cold. Under such conditions, MIOX activity in alfalfa was significantly increased. Heterologous MsMIOX2 expression in yeast enhanced salt, saline-alkali, drought, and cold tolerance. Overexpression of MsMIOX2 in the hairy roots of alfalfa decreased O2- and H2O2 content and enhanced the abiotic stress tolerance. This study offers comprehensive perspectives on the functional features of the MsMIOX family and provides a candidate gene for improving the abiotic stress tolerance of alfalfa.
科研通智能强力驱动
Strongly Powered by AbleSci AI