DeepAR: a novel deep learning-based hybrid framework for the interpretable prediction of androgen receptor antagonists

计算机科学 机器学习 人工智能 水准点(测量) 化学 概率逻辑 钥匙(锁) 雄激素受体 特征(语言学) 深度学习 数据挖掘 前列腺癌 药物发现 癌症 生物信息学 医学 语言学 哲学 计算机安全 大地测量学 地理 内科学 生物
作者
Nalini Schaduangrat,Nuttapat Anuwongcharoen,Phasit Charoenkwan,Watshara Shoombuatong
出处
期刊:Journal of Cheminformatics [BioMed Central]
卷期号:15 (1) 被引量:17
标识
DOI:10.1186/s13321-023-00721-z
摘要

Drug resistance represents a major obstacle to therapeutic innovations and is a prevalent feature in prostate cancer (PCa). Androgen receptors (ARs) are the hallmark therapeutic target for prostate cancer modulation and AR antagonists have achieved great success. However, rapid emergence of resistance contributing to PCa progression is the ultimate burden of their long-term usage. Hence, the discovery and development of AR antagonists with capability to combat the resistance, remains an avenue for further exploration. Therefore, this study proposes a novel deep learning (DL)-based hybrid framework, named DeepAR, to accurately and rapidly identify AR antagonists by using only the SMILES notation. Specifically, DeepAR is capable of extracting and learning the key information embedded in AR antagonists. Firstly, we established a benchmark dataset by collecting active and inactive compounds against AR from the ChEMBL database. Based on this dataset, we developed and optimized a collection of baseline models by using a comprehensive set of well-known molecular descriptors and machine learning algorithms. Then, these baseline models were utilized for creating probabilistic features. Finally, these probabilistic features were combined and used for the construction of a meta-model based on a one-dimensional convolutional neural network. Experimental results indicated that DeepAR is a more accurate and stable approach for identifying AR antagonists in terms of the independent test dataset, by achieving an accuracy of 0.911 and MCC of 0.823. In addition, our proposed framework is able to provide feature importance information by leveraging a popular computational approach, named SHapley Additive exPlanations (SHAP). In the meanwhile, the characterization and analysis of potential AR antagonist candidates were achieved through the SHAP waterfall plot and molecular docking. The analysis inferred that N-heterocyclic moieties, halogenated substituents, and a cyano functional group were significant determinants of potential AR antagonists. Lastly, we implemented an online web server by using DeepAR (at http://pmlabstack.pythonanywhere.com/DeepAR ). We anticipate that DeepAR could be a useful computational tool for community-wide facilitation of AR candidates from a large number of uncharacterized compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Sheep完成签到,获得积分10
刚刚
cdercder应助徐若楠采纳,获得20
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
1秒前
Ava应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得30
1秒前
非而者厚应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
2秒前
非而者厚应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
欢喜海应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
李健应助科研通管家采纳,获得10
2秒前
熄灯睡觉应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
yy发布了新的文献求助10
3秒前
xionghaizi完成签到,获得积分10
3秒前
4秒前
Avvei完成签到,获得积分10
5秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798859
求助须知:如何正确求助?哪些是违规求助? 3344607
关于积分的说明 10320917
捐赠科研通 3061108
什么是DOI,文献DOI怎么找? 1680042
邀请新用户注册赠送积分活动 806837
科研通“疑难数据库(出版商)”最低求助积分说明 763386