Transfer learning for multi-objective non-intrusive load monitoring in smart building

学习迁移 温室气体 集合(抽象数据类型) 领域(数学分析) 工作(物理) 能源消耗 楼宇自动化 计算机科学 传输(计算) 实时计算 工程类 机器学习 电气工程 机械工程 物理 数学分析 热力学 并行计算 生物 程序设计语言 数学 生态学
作者
Dandan Li,Jiangfeng Li,Xin Zeng,Vladimir Stanković,Lina Stanković,Changjiang Xiao,Qingjiang Shi
出处
期刊:Applied Energy [Elsevier BV]
卷期号:329: 120223-120223 被引量:38
标识
DOI:10.1016/j.apenergy.2022.120223
摘要

Buildings represent 39% of global greenhouse gas emissions, thus reducing carbon emissions in buildings is of importance to greenhouse gas emissions reductions. This requires understanding how electricity is utilized in the buildings, then optimizing electricity management to seek conservation of energy. Non-intrusive load monitoring (NILM) is a technique that disaggregates a house’s total load to estimate each appliance’s electric power usage. Several strategies for estimating one appliance at a time (one-to-one model) have been presented and experimentally proven to be effective, with two mainstream trends: appliance transfer learning and cross-domain transfer learning. The former refers to the transfer between different types of appliances in the same data domain, while the latter refers to the transfer between different data domains for the same type of appliance. Different from the previous work, this paper explores the approach of adopting one model for all appliances (one-to-many model) and proposes a novel transfer learning scheme, that incorporates appliance transfer learning and cross-domain transfer learning. Thus, a well-trained model can be transferred and utilized to effectively estimate the power consumption in another data set for all appliances, which demands fewer measurements and only one model. Three public data sets, REFIT, REDD, and UK-DALE, are used in our experiments. Further, a set of smart electricity meters was deployed in a practical non-residential building to validate the proposed method. The results demonstrate the accuracy and practicality compared to start-of-the-art one-to-one NILM transferred models. • An adaptive one-to-many NILM model is designed (one model for all appliances). • A novel transfer one-to-many NILM strategy is proposed for the first time. • The number of parameters for NILM model is significantly reduced. • A novel metric, Overall Disaggregation Proportion Error (ODPE), is used. • The proposed model is validated on both public and self-collected datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮夏寒发布了新的文献求助10
刚刚
令狐远航完成签到,获得积分10
1秒前
llyy完成签到 ,获得积分10
1秒前
Will发布了新的文献求助10
1秒前
2秒前
科研通AI6应助yuaasusanaann采纳,获得10
2秒前
轻松的芯完成签到 ,获得积分0
2秒前
令狐远航发布了新的文献求助10
3秒前
李镜锐完成签到,获得积分20
3秒前
jihenyouai0213完成签到,获得积分10
3秒前
JamesPei应助zzzzz采纳,获得10
4秒前
ding应助章123采纳,获得30
4秒前
flymove完成签到,获得积分10
4秒前
Neon关注了科研通微信公众号
4秒前
量子星尘发布了新的文献求助10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
馆长应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
6秒前
Metrix发布了新的文献求助10
6秒前
6秒前
称心的绿竹完成签到,获得积分10
7秒前
科研通AI5应助xiaokezhang采纳,获得10
7秒前
幸福大白发布了新的文献求助10
7秒前
8秒前
土豆泥完成签到 ,获得积分10
9秒前
叶叶完成签到,获得积分10
9秒前
9秒前
10秒前
叶落发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4693396
求助须知:如何正确求助?哪些是违规求助? 4064193
关于积分的说明 12566454
捐赠科研通 3762476
什么是DOI,文献DOI怎么找? 2077998
邀请新用户注册赠送积分活动 1106357
科研通“疑难数据库(出版商)”最低求助积分说明 984740