Recent reconfiguration of an ancient developmental gene regulatory network in Heliocidaris sea urchins

生物 基因调控网络 进化生物学 染色质 基因 遗传学 细胞命运测定 基因表达调控 进化发育生物学 转录因子 基因表达
作者
Phillip L. Davidson,Haobing Guo,Jane S. Swart,Abdull J. Massri,Allison Edgar,Lingyu Wang,Alejandro Berrío,Hannah R. Devens,Demian Koop,Paula Cisternas,He Zhang,Yaolei Zhang,Maria Byrne,Guangyi Fan,Gregory A. Wray
出处
期刊:Nature Ecology and Evolution [Nature Portfolio]
卷期号:6 (12): 1907-1920 被引量:27
标识
DOI:10.1038/s41559-022-01906-9
摘要

Changes in developmental gene regulatory networks (dGRNs) underlie much of the diversity of life, but the evolutionary mechanisms that operate on regulatory interactions remain poorly understood. Closely related species with extreme phenotypic divergence provide a valuable window into the genetic and molecular basis for changes in dGRNs and their relationship to adaptive changes in organismal traits. Here we analyse genomes, epigenomes and transcriptomes during early development in two Heliocidaris sea urchin species that exhibit highly divergent life histories and in an outgroup species. Positive selection and chromatin accessibility modifications within putative regulatory elements are enriched on the branch leading to the derived life history, particularly near dGRN genes. Single-cell transcriptomes reveal a dramatic delay in cell fate specification in the derived state, which also has far fewer open chromatin regions, especially near conserved cell fate specification genes. Experimentally perturbing key transcription factors reveals profound evolutionary changes to early embryonic patterning events, disrupting regulatory interactions previously conserved for ~225 million years. These results demonstrate that natural selection can rapidly reshape developmental gene expression on a broad scale when selective regimes abruptly change. More broadly, even highly conserved dGRNs and patterning mechanisms in the early embryo remain evolvable under appropriate ecological circumstances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助hanatae采纳,获得10
刚刚
刚刚
dream完成签到 ,获得积分10
1秒前
wml应助张志超采纳,获得10
1秒前
完美世界应助千里采纳,获得10
2秒前
浮游应助羿_liu采纳,获得10
2秒前
Afffrain发布了新的文献求助10
2秒前
2秒前
sunzeyi完成签到,获得积分10
3秒前
xww发布了新的文献求助10
3秒前
3秒前
3秒前
H-C应助笨笨访冬采纳,获得10
3秒前
共渡完成签到,获得积分10
4秒前
SBQHY完成签到,获得积分10
4秒前
yeyiliux发布了新的文献求助10
4秒前
飞鸿影下完成签到 ,获得积分10
4秒前
爆米花应助蜘猪侠zx采纳,获得10
4秒前
飞翔的荷兰人完成签到,获得积分10
4秒前
兴奋彩虹完成签到,获得积分10
5秒前
kyouu发布了新的文献求助10
5秒前
菠萝吹雪完成签到,获得积分10
5秒前
善学以致用应助秋半梦采纳,获得10
5秒前
烟花应助JAYCJP采纳,获得10
5秒前
酷波er应助开放的高山采纳,获得10
5秒前
WW完成签到,获得积分10
5秒前
默默的问兰完成签到,获得积分10
6秒前
6秒前
jiuwu完成签到,获得积分10
6秒前
zhuchunjie完成签到,获得积分10
6秒前
7秒前
RU0ONE完成签到,获得积分10
7秒前
学术大佬阿呆完成签到 ,获得积分10
7秒前
九号球完成签到,获得积分10
8秒前
8秒前
positive发布了新的文献求助10
8秒前
子车谷波发布了新的文献求助30
8秒前
Hello应助小曹医生采纳,获得10
9秒前
正直翎完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5247551
求助须知:如何正确求助?哪些是违规求助? 4412430
关于积分的说明 13732982
捐赠科研通 4283438
什么是DOI,文献DOI怎么找? 2350390
邀请新用户注册赠送积分活动 1347351
关于科研通互助平台的介绍 1306974