Classification of scanning electron microscope images of pharmaceutical excipients using deep convolutional neural networks with transfer learning

卷积神经网络 赋形剂 人工智能 学习迁移 粒子(生态学) 模式识别(心理学) 扫描电子显微镜 计算机科学 生物系统 表征(材料科学) 人工神经网络 材料科学 色谱法 化学 纳米技术 地质学 复合材料 海洋学 生物
作者
Hiroaki Iwata,Yoshihiro Hayashi,Aki Hasegawa,Kei Terayama,Yasushi Okuno
出处
期刊:International Journal Of Pharmaceutics: X [Elsevier BV]
卷期号:4: 100135-100135 被引量:18
标识
DOI:10.1016/j.ijpx.2022.100135
摘要

Convolutional Neural Networks (CNNs) are image analysis techniques that have been applied to image classification in various fields. In this study, we applied a CNN to classify scanning electron microscopy (SEM) images of pharmaceutical raw material powders to determine if a CNN can evaluate particle morphology. We tested 10 pharmaceutical excipients with widely different particle morphologies. SEM images for each excipient were acquired and divided into training, validation, and test sets. Classification models were constructed by applying transfer learning to pretrained CNN models such as VGG16 and ResNet50. The results of a 5-fold cross-validation showed that the classification accuracy of the CNN model was sufficiently high using either pretrained model and that the type of excipient could be classified with high accuracy. The results suggest that the CNN model can detect differences in particle morphology, such as particle size, shape, and surface condition. By applying Grad-CAM to the constructed CNN model, we succeeded in finding particularly important regions in the particle image of the excipients. CNNs have been found to have the potential to be applied to the identification and characterization of raw material powders for pharmaceutical development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小二郎应助李铛铛采纳,获得10
4秒前
Daisy完成签到 ,获得积分10
5秒前
大方太清发布了新的文献求助10
7秒前
8秒前
研友_LMpo68完成签到 ,获得积分10
12秒前
12秒前
nidhhog完成签到,获得积分20
13秒前
14秒前
16秒前
cxw发布了新的文献求助10
16秒前
1z6完成签到 ,获得积分10
16秒前
Ava应助nidhhog采纳,获得10
18秒前
18秒前
你好好好发布了新的文献求助10
19秒前
20秒前
pluto应助迟雨烟暮采纳,获得20
20秒前
21秒前
23秒前
大模型应助一北采纳,获得10
24秒前
大模型应助DrY采纳,获得10
25秒前
吴军霄完成签到,获得积分10
25秒前
快乐丹萱发布了新的文献求助10
27秒前
苹果白凡发布了新的文献求助10
27秒前
32秒前
33秒前
34秒前
34秒前
完美世界应助科研通管家采纳,获得10
35秒前
彭于晏应助科研通管家采纳,获得10
35秒前
顾矜应助科研通管家采纳,获得30
35秒前
Orange应助科研通管家采纳,获得20
35秒前
pluto应助科研通管家采纳,获得10
35秒前
华仔应助科研通管家采纳,获得10
35秒前
完美世界应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得30
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
CipherSage应助科研通管家采纳,获得10
35秒前
李健应助科研通管家采纳,获得10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776812
求助须知:如何正确求助?哪些是违规求助? 3322237
关于积分的说明 10209395
捐赠科研通 3037506
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757976