A Machine Learning Algorithm to Predict Hypoxic Respiratory Failure and risk of Acute Respiratory Distress Syndrome (ARDS) by Utilizing Features Derived from Electrocardiogram (ECG) and Routinely Clinical Data

急性呼吸窘迫综合征 医学 急性呼吸窘迫 算法 呼吸衰竭 心肺适能 波形 接收机工作特性 计算机科学 机器学习 重症监护医学 人工智能 内科学 电信 雷达
作者
Curtis Marshall,Saideep Narendrula,Jeffrey Wang,Joao Gabriel De Souza Vale,Hayoung Jeong,Preethi Krishnan,Philip Yang,Annette Esper,Rishi Kamaleswaran
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:3
标识
DOI:10.1101/2022.11.14.22282274
摘要

Abstract The recognition of Acute Respiratory Distress Syndrome (ARDS) may be delayed or missed entirely among critically ill patients. This study focuses on the development of a predictive algorithm for Hypoxic Respiratory Failure and associated risk of ARDS by utilizing routinely collected bedside monitoring. Specifically, the algorithm aims to predict onset over time. Uniquely, and favorable to robustness, the algorithm utilizes routinely collected, non-invasive cardiorespiratory waveform signals. This is a retrospective, Institutional-Review-Board-approved study of 2,078 patients at a tertiary hospital system. A modified Berlin criteria was used to identify 128 of the patients to have the condition during their encounter. A prediction horizon of 6 to 36 hours was defined for model training and evaluation. Xtreme Gradient Boosting algorithm was evaluated against signal processing and statistical features derived from the waveform and clinical data. Waveform-derived cardiorespiratory features, namely measures relating to variability and multi-scale entropy were robust and reliable features that predicted onset up to 36 hours before the clinical definition is met. The inclusion of structured data from the medical record, namely oxygenation patterns, complete blood counts, and basic metabolics further improved model performance. The combined model with 6-hour prediction horizon achieved an area under the receiver operating characteristic of 0.79 as opposed to the first 24-hour Lung Injury Prediction Score of 0.72.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero发布了新的文献求助10
2秒前
2秒前
充电宝应助驰驰采纳,获得10
4秒前
5秒前
lily336699发布了新的文献求助10
6秒前
G浅浅完成签到,获得积分10
6秒前
爆米花应助任侠传采纳,获得10
6秒前
田様应助梅子采纳,获得10
6秒前
Holland完成签到,获得积分10
7秒前
猪猪hero发布了新的文献求助10
8秒前
lizhiqian2024发布了新的文献求助10
9秒前
11秒前
李爱国应助dongxuzhen采纳,获得10
11秒前
12秒前
万能图书馆应助不懂采纳,获得10
13秒前
今后应助lily336699采纳,获得10
15秒前
驰驰发布了新的文献求助10
16秒前
17秒前
米龙完成签到,获得积分10
18秒前
柳如烟应助Bingo06采纳,获得10
19秒前
Erina完成签到 ,获得积分10
20秒前
ladyguagua发布了新的文献求助10
21秒前
22秒前
23秒前
25秒前
25秒前
ugk发布了新的文献求助10
26秒前
啊哭发布了新的文献求助10
27秒前
乐乐应助科研通管家采纳,获得10
28秒前
脑洞疼应助科研通管家采纳,获得10
28秒前
28秒前
英姑应助科研通管家采纳,获得10
28秒前
赘婿应助科研通管家采纳,获得10
28秒前
Wanfeng应助科研通管家采纳,获得50
28秒前
搜集达人应助科研通管家采纳,获得10
29秒前
29秒前
奥特曼发布了新的文献求助10
29秒前
忧郁绿兰发布了新的文献求助10
29秒前
研友_LB1rk8完成签到,获得积分10
30秒前
背后书雪完成签到 ,获得积分10
30秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
协和专家大医说:医话肿瘤 400
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805206
求助须知:如何正确求助?哪些是违规求助? 3350214
关于积分的说明 10347750
捐赠科研通 3066060
什么是DOI,文献DOI怎么找? 1683511
邀请新用户注册赠送积分活动 809039
科研通“疑难数据库(出版商)”最低求助积分说明 765205