Compositional Graphical Lasso Resolves the Impact of Parasitic Infection on Gut Microbial Interaction Networks in a Zebrafish Model

生物 微生物群 计算生物学 图形模型 斑马鱼 基因组 共同进化 计算机科学 生态学 人工智能 生物信息学 遗传学 基因
作者
Chuan Tian,Duo Jiang,Austin Hammer,Thomas J. Sharpton,Yuan Jiang
出处
期刊:Journal of the American Statistical Association [Taylor & Francis]
卷期号:: 1-15
标识
DOI:10.1080/01621459.2022.2164287
摘要

Understanding how microbes interact with each other is key to revealing the underlying role that microorganisms play in the host or environment and to identifying microorganisms as an agent that can potentially alter the host or environment. For example, understanding how the microbial interactions associate with parasitic infection can help resolve potential drug or diagnostic test for parasitic infection. To unravel the microbial interactions, existing tools often rely on graphical models to infer the conditional dependence of microbial abundances to represent their interactions. However, current methods do not simultaneously account for the discreteness, compositionality, and heterogeneity inherent to microbiome data. Thus, we build a new approach called “compositional graphical lasso” upon existing tools by incorporating the above characteristics into the graphical model explicitly. We illustrate the advantage of compositional graphical lasso over current methods under a variety of simulation scenarios and on a benchmark study, the Tara Oceans Project. Moreover, we present our results from the analysis of a dataset from the Zebrafish Parasite Infection Study, which aims to gain insight into how the gut microbiome and parasite burden covary during infection, thus, uncovering novel putative methods of disrupting parasite success. Our approach identifies changes in interaction degree between infected and uninfected individuals for three taxa, Photobacterium, Gemmobacter, and Paucibacter, which are inversely predicted by other methods. Further investigation of these method-specific taxa interaction changes reveals their biological plausibility. In particular, we speculate on the potential pathobiotic roles of Photobacterium and Gemmobacter in the zebrafish gut, and the potential probiotic role of Paucibacter. Collectively, our analyses demonstrate that compositional graphical lasso provides a powerful means of accurately resolving interactions between microbiota and can thus drive novel biological discovery. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的函函应助无私乐驹采纳,获得10
1秒前
大太阳完成签到,获得积分20
1秒前
2秒前
小高完成签到,获得积分10
2秒前
3秒前
阳光的羊完成签到,获得积分10
4秒前
4秒前
黑豆也应助金熙美采纳,获得10
4秒前
梁小鱼发布了新的文献求助10
5秒前
现代友桃发布了新的文献求助10
5秒前
wwj_kyt发布了新的文献求助10
6秒前
科研通AI5应助平常的无极采纳,获得10
6秒前
英姑应助给好评采纳,获得10
6秒前
打击8完成签到 ,获得积分10
6秒前
科研通AI5应助中旬日采纳,获得10
7秒前
十一完成签到,获得积分10
7秒前
文献求助完成签到,获得积分10
8秒前
yiling发布了新的文献求助10
9秒前
10秒前
yufanhui应助wangjie采纳,获得10
11秒前
大个应助忧郁小鸽子采纳,获得10
11秒前
adgadsf完成签到,获得积分10
11秒前
顾矜应助devin22222采纳,获得10
12秒前
平常的无极完成签到,获得积分20
12秒前
大太阳发布了新的文献求助20
12秒前
12秒前
13秒前
顾矜应助苦行僧采纳,获得10
14秒前
瑣儿完成签到,获得积分10
15秒前
17秒前
yiling完成签到,获得积分20
18秒前
给好评发布了新的文献求助10
18秒前
19秒前
19秒前
坦率的跳跳糖完成签到 ,获得积分10
20秒前
阿虎发布了新的文献求助10
23秒前
给好评完成签到,获得积分10
23秒前
春夏发布了新的文献求助30
25秒前
科研通AI5应助dora采纳,获得10
25秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
协和专家大医说:医话肿瘤 400
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805267
求助须知:如何正确求助?哪些是违规求助? 3350231
关于积分的说明 10348060
捐赠科研通 3066150
什么是DOI,文献DOI怎么找? 1683567
邀请新用户注册赠送积分活动 809064
科研通“疑难数据库(出版商)”最低求助积分说明 765214